Multiple Structural Breaks in Vector Error Correction Models – Supplementary Material

Domenic Franjic	Markus Mößler	Karsten Schweikert*		
University of Hohenheim	University of Hohenheim	University of Hohenheim		

[Latest update: January 31, 2025]

1 Additional simulation results

Table S1: Case 1 (no short-run dynamics, correlated innovations)

	SB1: $(\tau = 0.5)$					
T	pce	au				
100	95.5	0.503(0.044)				
200	97.7	0.505(0.032)				
400	98.0	0.503(0.023)				
	SB2: $(\tau_1$	$= 0.33, \tau_2 = 0.67)$				
T	pce	$ au_1$	$ au_2$			
150	81.1	0.332(0.049)	$0.661 \ (0.033)$			
300	87.0	0.340(0.037)	0.663(0.021)			
600	92.0	$0.341 \ (0.036)$	0.666~(0.014)			
SB4: $(\tau_1 = 0.2, \tau_2 = 0.4, \tau_3 = 0.6, \tau_4 = 0.8)$						
Т	pce	$ au_1$	$ au_2$	$ au_3$	$ au_4$	
250	51.2	0.229(0.062)	0.408(0.060)	0.610(0.048)	0.790(0.036)	
500	65.1	0.219(0.048)	0.400(0.042)	$0.607 \ (0.028)$	$0.796\ (0.018)$	
1000	70.5	$0.218\ (0.045)$	$0.397\ (0.037)$	$0.609\ (0.026)$	$0.796\ (0.015)$	

Note: We use 1,000 replications of the data-generating process. *pce* denotes the percentages of correct estimation of the number of breaks *m*. The variance of the error terms is $\sigma_u^2 = 1$ and their correlation is 0.5. The first panel reports the results for one active breakpoint at $\tau = 0.5$, the second panel considers two active breakpoints at $\tau_1 = 0.33$ and $\tau_2 = 0.67$ and the third panel has four active breakpoints at $\tau_1 = 0.2$, $\tau_2 = 0.4$, $\tau_3 = 0.6$, and $\tau_4 = 0.8$. Standard deviations are given in parentheses.

^{*}Address: University of Hohenheim, Core Facility Hohenheim & Institute of Economics, Schloss Hohenheim 1 C, 70593 Stuttgart, Germany, e-mail: karsten.schweikert@uni-hohenheim.de

SD1. (- 0.5)						
	SDI: (τ)	= 0.5)				
T	pce	au				
100	86.6	0.498(0.068)				
200	92.2	0.504(0.038)				
400	95.0	0.505(0.029)				
	SB2: $(\tau_1$	$= 0.33, \tau_2 = 0.67)$				
T	pce	$ au_1$	$ au_2$			
150	72.1	$0.329\ (0.053)$	0.664(0.047)			
300	86.1	0.336(0.036)	0.665(0.027)			
600	90.9	0.336(0.028)	0.667(0.013)			
SB4: $(\tau_1 = 0.2, \tau_2 = 0.4, \tau_3 = 0.6, \tau_4 = 0.8)$						
T	pce	$ au_1$	$ au_2$	$ au_3$	$ au_4$	
250	41.3	0.195(0.056)	0.393(0.072)	0.588(0.079)	0.792(0.063)	
500	53.9	$0.201 \ (0.035)$	0.395(0.042)	0.596(0.043)	0.792(0.038)	
1000	66.0	0.201(0.024)	0.396(0.029)	0.599(0.029)	0.795(0.025)	

Table S2: Case 2 (no short-run dynamics, correlated innovations)

Note: We use 1,000 replications of the data-generating process. The variance of the error terms is $\sigma_u^2 = 1$ and their correlation is 0.5. *pce* denotes the percentages of correct estimation of the number of breaks *m*. The first panel reports the results for one active breakpoint at $\tau = 0.5$, the second panel considers two active breakpoints at $\tau_1 = 0.33$ and $\tau_2 = 0.67$ and the third panel has four active breakpoints at $\tau_1 = 0.2$, $\tau_2 = 0.4$, $\tau_3 = 0.6$, and $\tau_4 = 0.8$. Standard deviations are given in parentheses.

Table S3: Case 1 (strong short-run dynamics, correlated innovations)

	SB1: $(\tau = 0.5)$					
T	pce	au				
100	61.0	0.472(0.112)				
200	79.3	0.492(0.064)				
400	88.5	0.498(0.038)				
	SB2: $(\tau_1$	$= 0.33, \tau_2 = 0.67)$				
T	pce	$ au_1$	$ au_2$			
150	80.1	0.327(0.051)	0.665(0.039)			
300	86.8	0.333(0.045)	$0.666 \ (0.026)$			
600	91.8	0.336(0.040)	0.665(0.021)			
SB4: $(\tau_1 = 0.2, \tau_2 = 0.4, \tau_3 = 0.6, \tau_4 = 0.8)$						
T	pce	$ au_1$	$ au_2$	$ au_3$	$ au_4$	
250	29.1	0.238(0.094)	0.414(0.102)	0.605(0.090)	0.784(0.057)	
500	34.9	$0.226\ (0.081)$	$0.411 \ (0.078)$	0.606(0.062)	0.788(0.045)	
1000	68.0	0.219(0.043)	$0.398\ (0.037)$	0.610(0.030)	0.794(0.022)	

Note: We use 1,000 replications of the data-generating process. *pce* denotes the percentages of correct estimation of the number of breaks *m*. The variance of the error terms is $\sigma_u^2 = 1$ and their correlation is 0.5. The first panel reports the results for one active breakpoint at $\tau = 0.5$, the second panel considers two active breakpoints at $\tau_1 = 0.33$ and $\tau_2 = 0.67$ and the third panel has four active breakpoints at $\tau_1 = 0.2$, $\tau_2 = 0.4$, $\tau_3 = 0.6$, and $\tau_4 = 0.8$. Standard deviations are given in parentheses.

 Table S4: Case 2 (strong short-run dynamics, correlated innovations)

	SB1: $(\tau$	= 0.5)				
Т	pce	au				
100	68.8	0.469(0.095)				
200	84.2	0.488(0.066)				
400	91.0	0.495(0.043)				
	SB2: $(\tau_1$	$= 0.33, \tau_2 = 0.67)$				
Т	pce	$ au_1$	$ au_2$			
150	50.6	0.320(0.094)	0.663(0.078)			
300	59.6	0.331(0.071)	0.669(0.048)			
600	71.5	0.332(0.047)	$0.671 \ (0.027)$			
SB4: $(\tau_1 = 0.2, \tau_2 = 0.4, \tau_3 = 0.6, \tau_4 = 0.8)$						
T	pce	$ au_1$	$ au_2$	$ au_3$	$ au_4$	
250	31.9	0.202(0.086)	0.396(0.097)	0.580(0.111)	0.782(0.092)	
500	36.1	0.210(0.072)	0.406(0.068)	0.596(0.078)	0.800(0.054)	
1000	45.2	0.204(0.049)	0.404(0.047)	0.595(0.051)	0.799(0.044)	

Note: We use 1,000 replications of the data-generating process. *pce* denotes the percentages of correct estimation of the number of breaks m. The variance of the error terms is $\sigma_u^2 = 1$ and their correlation is 0.5. The first panel reports the results for one active breakpoint at $\tau = 0.5$, the second panel considers two active breakpoints at $\tau_1 = 0.33$ and $\tau_2 = 0.67$ and the third panel has four active breakpoints at $\tau_1 = 0.2$, $\tau_2 = 0.4$, $\tau_3 = 0.6$, and $\tau_4 = 0.8$. Standard deviations are given in parentheses.