Nowcasting Macroeconomic Variables with a Sparse Mixed Frequency Dynamic Factor Model –Supplementary Material–

Domenic Franjic^{*} Karsten Schweikert[†]

University of Hohenheim

University of Hohenheim

[Latest update: October 30, 2024]

A Additional Simulation Results

	s = 0.00				s = 0.80			
	$\bar{\rho} \approx 0.2$	$\bar{\rho}\approx 0.3$	$\bar{\rho}\approx 0.4$	$\bar{\rho}\approx 0.5$	$\bar{\rho} \approx 0.2$	$\bar{\rho}\approx 0.3$	$\bar{\rho}\approx 0.4$	$\bar{\rho}\approx 0.5$
R = 1	-0.424	-0.349	-0.059	-0.188	-0.005	-0.004	-0.033	-0.046
R = 2	-0.472	-0.406	-0.160	-0.057	-0.009	-0.009	-0.048	-0.002
R = 3	-0.483	-0.285	-0.064	0.022	-0.321	-0.212	-0.375	0.039
R = 4	-0.211	-0.080	-0.251	-0.199	-0.207	-0.078	-0.004	-0.065

Note: ρ refers to the average absolute correlation-coefficients of the measurement errors. MSNE reductions are computed as 1-S, where S is given by $S = \sum_{i=1}^{500} (\hat{x}_{T,0,i,\text{SDFM}} - x_{T,0,i})^2 / \sum_{i=1}^{500} (\hat{x}_{T,0,i,\text{DFM}} - x_{T,0,i})^2$, where $\hat{x}_{T,0,i,\text{SDFM}}$ represents the *i*th nowcast of the SDFM model, $\hat{x}_{T,0,i,\text{DFM}}$ represents the *i*th nowcast of the benchmark DFM model, and $x_{T,0,i}$ represents the realisation of the variable of interest at time point T.

Table 1: MSNE reduction over 1000 simulated nowcasting exercises restricted to a single penalty for all factors using T = 100 observations for N = 50 variables

^{*}Address: University of Hohenheim, Core Facility Hohenheim & Institute of Economics, Schloss Hohenheim 1 C, 70593 Stuttgart, Germany, e-mail: *franjic@uni-hohenheim.de*

[†]Address: University of Hohenheim, Core Facility Hohenheim & Institute of Economics, Schloss Hohenheim 1 C, 70593 Stuttgart, Germany, e-mail: *karsten.schweikert@uni-hohenheim.de*

	s = 0.00				s = 0.80			
	$\bar{\rho} \approx 0.2$	$\bar{\rho}\approx 0.3$	$\bar{\rho}\approx 0.4$	$\bar{\rho}\approx 0.5$	$\bar{\rho} \approx 0.2$	$\bar{\rho}\approx 0.3$	$\bar{\rho}\approx 0.4$	$\bar{\rho}\approx 0.5$
R = 1	0.411	0.415	0.481	0.486	0.513	0.491	0.473	0.450
R=2	0.403	0.404	0.516	0.509	0.490	0.497	0.527	0.505
R = 3	0.375	0.436	0.480	0.501	0.412	0.420	0.484	0.523
R = 4	0.433	0.452	0.479	0.515	0.447	0.470	0.491	0.522

Note: The SDFM model hyper-parameters are validated optimising the BIC. ρ refers to the average absolute correlation-coefficients of the measurement errors. The ratios of relative MSNE reductions are computed as $\frac{1}{500}\sum_{i=1}^{500} \mathbb{1}\left((\hat{x}_{T,0,i,\text{SDFM}} - x_{T,0,i})^2 < (\hat{x}_{T,0,i,\text{DFM}} - x_{T,0,i})^2\right), \text{ where } \hat{x}_{T,0,i,\text{SDFM}} \text{ represents the } i\text{th nowcast of the SDFM model}, and <math>x_{T,0,i}$ represents the realisation of the variable of interest at time point T.

Table 2: Ratio of relative MSNE reductions over 1000 simulated nowcasting exercises restricted to a single penalty for all factors using T = 200 observations for N = 100 variables

	s = 0.00				s = 0.80			
	$\bar{\rho} \approx 0.2$	$\bar{\rho}\approx 0.3$	$\bar{\rho}\approx 0.4$	$\bar{\rho}\approx 0.5$	$\bar{\rho} \approx 0.2$	$\bar{\rho}\approx 0.3$	$\bar{\rho}\approx 0.4$	$\bar{\rho}\approx 0.5$
R = 1	-0.483	-0.225	-0.212	-0.034	0.017	-0.194	-0.008	-0.022
R = 2	-0.424	-0.049	-0.005	-0.001	-0.024	-0.081	-0.050	-0.109
R = 3	-0.413	0.010	-0.147	0.012	-0.493	-0.089	0.034	0.024
R = 4	-0.358	0.022	0.014	0.013	-0.313	0.038	0.037	-0.060

Note: The SDFM model hyper-parameters are validated optimising the BIC. The SDFM model hyper-parameters are validated optimising the BIC. ρ refers to the average absolute correlation-coefficients of the measurement errors. MSNE reductions are computed as 1-S, where S is given by $S = \sum_{i=1}^{500} (\hat{x}_{T,0,i,\text{SDFM}} - x_{T,0,i})^2 / \sum_{i=1}^{500} (\hat{x}_{T,0,i,\text{DFM}} - x_{T,0,i})^2$, where $\hat{x}_{T,0,i,\text{SDFM}}$ represents the *i*th nowcast of the SDFM model, $\hat{x}_{T,0,i,\text{DFM}}$ represents the *i*th nowcast of the variable of interest at time point T.

Table 3: MSNE reduction over 1000 simulated nowcasting exercises restricted to a single penalty for all factors using T = 200 observations for N = 100 variables

	s = 0.00				s = 0.80			
	$\bar{\rho} \approx 0.2$	$\bar{\rho}\approx 0.3$	$\bar{\rho}\approx 0.4$	$\bar{\rho}\approx 0.5$	$\bar{\rho} \approx 0.2$	$\bar{\rho}\approx 0.3$	$\bar{\rho}\approx 0.4$	$\bar{\rho}\approx 0.5$
R = 1	0.432	0.486	0.479	0.496	0.518	0.493	0.490	0.456
R = 2	0.399	0.510	0.517	0.478	0.486	0.523	0.520	0.523
R = 3	0.435	0.528	0.551	0.510	0.373	0.542	0.550	0.510
R = 4	0.432	0.532	0.538	0.489	0.432	0.544	0.545	0.523

Note: The SDFM model hyper-parameters are validated optimising the BIC. ρ refers to the average absolute correlation-coefficients of the measurement errors. The ratios of relative MSNE reductions are computed as $\frac{1}{500}\sum_{i=1}^{500} \mathbbm \left((\hat{x}_{T,0,i,\text{SDFM}} - x_{T,0,i})^2 < (\hat{x}_{T,0,i,\text{DFM}} - x_{T,0,i})^2 \right)$, where $\hat{x}_{T,0,i,\text{SDFM}}$ represents the *i*th nowcast of the SDFM model, $\hat{x}_{T,0,i,\text{DFM}}$ represents the *i*th nowcast of the benchmark DFM model, and $x_{T,0,i}$ represents the realisation of the variable of interest at time point *T*.

Table 4: Ratio of relative MSNE reductions over 500 simulated nowcasting exercises restricted to a single penalty for all factors using T = 200 observations for N = 100 Variables

B Algorithms

In the upcoming section, the following conventions are used. The symbol \sqcup denotes the operation of adding an element to the end of a sequence. Let S be a sequence of integer values and $\mathbf{A} = (a_{n,m})_{n=1,m=1}^{N,M}$ be a matrix. Assuming $\min S \ge 1$ and $\max S \le M$, $\mathbf{A}[S, \cdot]$ refers to the submatrix of \mathbf{A} that is constructed by concatenating the rows with index corresponding to the integers in S in order. For a vector $\mathbf{v} = (v_n)_{n=1}^N$, and $\min S \ge 1$ and $\max S \le N$, $\mathbf{v}[S]$ denotes the subvector consisting of the elements of \mathbf{v} with corresponding index $n \in S$. Similarly, $\mathbf{v}[n_1 : n_m]$ refers to the subvector consisting of the elements with index n_1 to index n_m . Adding an element v at the end of a vector is denoted as $[\mathbf{v}, v]$. Analogously, $[\mathbf{v}_1, \mathbf{v}_2]$ concatenates two vectors $\mathbf{v}_1, \mathbf{v}_2$. Initialising an empty vector is denoted as $]\mathbf{v}, v_n[:= (v_1, \dots, v_{n-1}, v_{n+1}, \dots, v_N)$. For two vectors $\mathbf{v}_1, \mathbf{v}_2$ of equal length, the element-wise division is defined as $\mathbf{v}_1 \oslash \mathbf{v}_2 = (v_{1,1}/v_{1,2}, \dots, v_{n,1}/v_{n,2})$.

Algorithm 1 Sparse Principal Components Analysis (Zou and Hastie, 2020)

1: $\mathbf{X}' = \mathbf{U}\mathbf{D}\mathbf{V}'$

2: $\mathbf{A} \leftarrow (\mathbf{v}_1, \dots, \mathbf{v}_R)$, where $\mathbf{v}_1, \dots, \mathbf{v}_R$ correspond to the first R columns of \mathbf{V} .

3: Set A to a Matrix with entries equal to the double precision floating point maximum

4: Set conversion threshold $\epsilon>0$

5: while $\|\mathbf{A} - \tilde{\mathbf{A}}\|_F > \epsilon$ do

6:
$$\mathbf{A} \leftarrow \mathbf{A}$$

- 7: **for** $r \in \{1, ..., R\}$ **do**
- 8: Use Algorithm 2 to solve

$$\widehat{\boldsymbol{\lambda}}_{r} \leftarrow \operatorname*{argmin}_{\boldsymbol{\lambda}_{r}} \left\{ \left(\boldsymbol{\alpha}_{r} - \boldsymbol{\lambda}_{r}\right)' \mathbf{X}_{\tau} \mathbf{X}_{\tau}' \left(\boldsymbol{\alpha} - \boldsymbol{\lambda}_{r}\right) + \kappa_{2} \|\boldsymbol{\lambda}_{r}\|_{2} + \kappa_{1,r} \|\boldsymbol{\lambda}_{r}\|_{1} \right\}$$
(B.1)

- 9: end for
- 10: $\widehat{\boldsymbol{\lambda}} \leftarrow (\widehat{\boldsymbol{\lambda}}_1, \dots, \widehat{\boldsymbol{\lambda}}_R)$
- 11: Compute the singular value decomposition of $\mathbf{X}\mathbf{X}'\hat{\boldsymbol{\lambda}}$, i.e., $\mathbf{X}\mathbf{X}'\hat{\boldsymbol{\lambda}} = \mathbf{U}\mathbf{D}\mathbf{V}'$.
- 12: $\mathbf{A} \leftarrow \mathbf{U}\mathbf{V}'$
- 13: end while
- 14: return $\widehat{\Lambda} = \widehat{\lambda}$

Algorithm 2 Least Angle Regression (Efron et al., 2004; Zou and Hastie, 2005, 2020)

1: Set N to the number of rows of ${\bf X}$

2: Set T to the number of columns of ${\bf X}$

3:
$$\mathbf{y} \leftarrow \mathbf{X} \boldsymbol{\alpha}_r$$

4: $\mathbf{c} \leftarrow \left| \frac{1}{\sqrt{1+\kappa_2}} \mathbf{X} \mathbf{y} \right|$

5: $p \leftarrow \max \mathbf{c}$ 6: $\mathcal{I} \leftarrow (1, \ldots, N)$ 7: $\mathcal{A} \leftarrow \emptyset$ 8: $d \leftarrow 0$ 9: $\mathbf{s} \leftarrow [\cdot]$ 10: $\widehat{\boldsymbol{\lambda}}_r \leftarrow \mathbf{0}_N$ 11: $\widehat{\mathbf{q}} \leftarrow \mathbf{0}_N$ 12: Set E to double precision floating point maximum 13: Set threshold values M for $0 < M \leq N$ and/or $\kappa_{1,r}$ 14: while $2p\sqrt{1+\kappa_2} > \kappa_{1,r} \wedge |\mathcal{A}| < M$ do $\widehat{c} \leftarrow \max |\mathbf{x}_n \mathbf{y}| \text{ for } n \in \mathcal{I} \text{ and } \mathbf{x}_n \in \mathbf{X}$ 15: $\widehat{n} \leftarrow \operatorname{argmax} |\mathbf{x}_n \mathbf{y}| \text{ for } n \in \mathcal{I} \text{ and } \mathbf{x}_n \in \mathbf{X}$ 16: if $d = 0 \land |\mathcal{A}| < N$ then 17: $\mathcal{A} \leftarrow \mathcal{A} \sqcup \{\widehat{n}\}$ 18: $\mathcal{I} \leftarrow \mathcal{I} \setminus \{ \widehat{n} \}$ 19: $\mathbf{s} \leftarrow [\mathbf{s}, \operatorname{sign}(\widehat{c})]$ 20:if $|\mathcal{A}| = 1$ then 21: $\mathbf{L} \leftarrow \sqrt{\mathbf{x}_n \mathbf{x}_n + \kappa_2} / (1 + \kappa_2)$ 22:else 23:Update the lower Cholesky matrix **L** by $\mathbf{x}_{\hat{n}}$ 24:end if 25:end if 26:if $d = 1 \vee |\mathcal{A}| = N$ then 27: $d \leftarrow 0$ 28:end if 29: $\mathbf{g} \leftarrow \mathbf{s}$ 30: $\mathbf{g} \leftarrow \mathbf{v}_1$, where \mathbf{v}_1 is the solution to $\mathbf{L}\mathbf{v}_1 = \mathbf{g}$ 31: $\mathbf{g} \leftarrow \mathbf{v}_2$, where \mathbf{v}_2 is the solution to $\mathbf{L}'\mathbf{v}_2 = \mathbf{g}$ 32: $a \leftarrow 1/\sqrt{\mathbf{g's}}$ 33: $\mathbf{w} \leftarrow a\mathbf{g}$ 34: $\mathbf{u} \leftarrow \left[\frac{1}{\sqrt{1+\kappa_2}} \mathbf{X}[\mathcal{A}, \cdot]' \mathbf{w}, \frac{\sqrt{\kappa_2}}{\sqrt{1+\kappa_2}} \mathbf{w} \right]$ 35: $\boldsymbol{\gamma} \leftarrow -1 \cdot (\widehat{\boldsymbol{\lambda}}_r[\mathcal{A}] \oslash \mathbf{w})$ 36: if $0 < \max \gamma$ then 37: 38: $\tilde{\gamma} \leftarrow \max \gamma$ $n \leftarrow \operatorname{argmin}_{\gamma_i} \text{ for } \gamma_i \in \boldsymbol{\gamma}$ 39: else 40: $\tilde{\gamma} \leftarrow E$ 41: end if 42:

 $\widehat{\gamma} \leftarrow \widehat{c}/a$ 43: if $|\mathcal{A}| < N$ then 44: $\boldsymbol{\alpha} \leftarrow \mathbf{X}[\mathcal{A}, \cdot]\mathbf{u}[1:T] + \sqrt{\kappa_2}\mathbf{u}[(T+1):|\mathcal{A}|]$ 45:for $m \in (1, \ldots, |\mathcal{I}|)$ do 46: $h_1 \leftarrow (\hat{c} - c_{i_m})/(a - \alpha_m)$, where $i_m \in \mathcal{I}, c_{i_m} \in \mathbf{c}$, and $\alpha_m \in \boldsymbol{\alpha}$ 47: $h_2 \leftarrow (\hat{c} + c_{i_m})/(a + \alpha_m)$, where $i_m \in \mathcal{I}, c_{i_m} \in \mathbf{c}$, and $\alpha_m \in \boldsymbol{\alpha}$ 48: if $0 < h_1 < \widehat{\gamma}$ then 49: $\widehat{\gamma} \leftarrow h_1$ 50: end if 51: if $0 < h_2 < \hat{\gamma}$ then 52: $\widehat{\gamma} \leftarrow h_2$ 53: end if 54:end for 55: end if 56: $\gamma^{\dagger} \leftarrow \min\{\tilde{\gamma}, \hat{\gamma}\}$ 57: $oldsymbol{\lambda}^{\dagger} \leftarrow \widehat{oldsymbol{\lambda}}_r$ 58: $\widehat{\boldsymbol{\lambda}}_r \leftarrow \widehat{\boldsymbol{\lambda}}_r + \gamma^{\dagger} \mathbf{w}$ 59: $\widehat{\mathbf{q}} \leftarrow \widehat{\mathbf{q}} - \gamma^{\dagger} \mathbf{u}$ 60: $p^{\dagger} \leftarrow p - |\gamma a|$ 61: if $2p^{\dagger}\sqrt{1+\kappa_2} > \kappa_{1,r}$ then 62: $q_1 \leftarrow 2p^{\dagger}\sqrt{1+\kappa_2}$ 63: $\begin{array}{l} q_2 \leftarrow 2p\sqrt{1+\kappa_2} \\ \widehat{\boldsymbol{\lambda}}_r \leftarrow \left(\frac{q_2-\kappa_{1,r}}{q_2-q_1}\widehat{\boldsymbol{\lambda}}_r + \frac{\kappa_{1,r}-q_1}{q_2-q_1}\boldsymbol{\lambda}^{\dagger}\right)(\sqrt{1+\kappa_2})^{-1} \\ p \leftarrow p^{\dagger} \end{array}$ 64: 65: 66: else 67: if $\tilde{\gamma} < \hat{\gamma}$ then 68: $d \leftarrow 1$ 69: $\widehat{\boldsymbol{\lambda}}_r[n] \leftarrow 0$ 70: $\mathcal{I} \leftarrow \mathcal{I} \sqcup \{n\}$ 71: $\mathbf{s} \leftarrow \left] \mathbf{s}, s_{|\mathcal{A}|} \right[$ 72: $\mathcal{A} \leftarrow \mathcal{A} \backslash \{n\}$ 73: Downdate the lower Cholesky matrix \mathbf{L} by \mathbf{x}_n 74: end if 75: end if 76: 77: end while 78: return $\widehat{\lambda}_r$

References

- Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004). Least angle regression. *The* Annals of Statistics, 32(2):407 – 499.
- Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2):301–320.
- Zou, H. and Hastie, T. (2020). elasticnet: Elastic-Net for Sparse Estimation and Sparse PCA. R package version 1.3.