Nowcasting Macroeconomic Variables with a Sparse Mixed Frequency Dynamic Factor Model –Supplementary Material–

Domenic Franjic[∗] Karsten Schweikert†

University of Hohenheim

University of Hohenheim

[Latest update: October 30, 2024]

A Additional Simulation Results

Note: *ρ* refers to the average absolute correlation-coefficients of the measurement errors. MSNE reductions are computed as $1-S$, where S is given by $S = \sum_{i=1}^{500} (\hat{x}_{T,0,i,\text{SDFM}} - x_{T,0,i})^2 / \sum_{i=1}^{500} (\hat{x}_{T,0,i,\text{DFM}} - x_{T,0,i})^2$, where $\hat{x}_{T,0,i,\text{SDFM}}$ represents the *i*th nowcast of the SDFM model, $\hat{x}_{T,0,i,\text{DFM}}$ represents the *i*th nowcast of the benchmark DFM model, and $x_{T,0,i}$ represents the realisation of the variable of interest at time point *T*.

Table 1: MSNE reduction over 1000 simulated nowcasting exercises restricted to a single penalty for all factors using $T = 100$ observations for $N = 50$ variables

[∗]Address: University of Hohenheim, Core Facility Hohenheim & Institute of Economics, Schloss Hohenheim 1 C, 70593 Stuttgart, Germany, e-mail: *franjic@uni-hohenheim.de*

[†]Address: University of Hohenheim, Core Facility Hohenheim & Institute of Economics, Schloss Hohenheim 1 C, 70593 Stuttgart, Germany, e-mail: *karsten.schweikert@uni-hohenheim.de*

			$s = 0.00$		$s = 0.80$			
		$\bar{\rho} \approx 0.2 \quad \bar{\rho} \approx 0.3 \quad \bar{\rho} \approx 0.4 \quad \bar{\rho} \approx 0.5 \quad \bar{\rho} \approx 0.2 \quad \bar{\rho} \approx 0.3 \quad \bar{\rho} \approx 0.4 \quad \bar{\rho} \approx 0.5$						
		$R = 1$ 0.411 0.415 0.481		0.486 0.513		0.491 0.473		0.450
$R=2$	0.403		0.404 0.516		0.509 0.490	0.497	0.527	0.505
$R=3$	0.375	0.436	0.480	0.501	0.412	0.420	0.484	0.523
$R=4$	0.433		0.452 0.479	0.515	0.447	0.470	0.491	0.522

Note: The SDFM model hyper-parameters are validated optimising the BIC. *ρ* refers to the average absolute correlation-coefficients of the measurement errors. The ratios of relative MSNE reductions are computed as $\frac{1}{500} \sum_{i=1}^{500} \mathbb{1} \left((\hat{x}_{T,0,i,\text{SDFM}} - x_{T,0,i})^2 < (\hat{x}_{T,0,i,\text{DFM}} - x_{T,0,i})^2 \right)$, where $\hat{x}_{T,0,i,\text{SDFM}}$ represents the *i*th nowcast of the SDFM model, $\hat{x}_{T,0,i,\text{DFM}}$ represents the *i*th nowcast of the benchmark DFM model, and $x_{T,0,i}$ represents the realisation of the variable of interest at time point *T*.

Table 2: Ratio of relative MSNE reductions over 1000 simulated nowcasting exercises restricted to a single penalty for all factors using $T = 200$ observations for $N = 100$ variables

			$s = 0.00$		$s = 0.80$			
					$\bar{\rho} \approx 0.2 \quad \bar{\rho} \approx 0.3 \quad \bar{\rho} \approx 0.4 \quad \bar{\rho} \approx 0.5 \mid \bar{\rho} \approx 0.2 \quad \bar{\rho} \approx 0.3 \quad \bar{\rho} \approx 0.4 \quad \bar{\rho} \approx 0.5 \mid$			
$R=1$		$-0.483 -0.225 -0.212$		-0.034	0.017	-0.194	-0.008	-0.022
$R=2$	-0.424	-0.049	-0.005	-0.001	-0.024	-0.081	-0.050	-0.109
$R=3$	-0.413	0.010	-0.147	0.012	-0.493	-0.089	0.034	0.024
$R=4$	-0.358	0.022	0.014	0.013	-0.313	0.038	0.037	-0.060

Note: The SDFM model hyper-parameters are validated optimising the BIC. The SDFM model hyper-parameters are validated optimising the BIC. ρ refers to the average absolute correlation-coefficients of the measurement errors. MSNE reductions are computed as $1-S$, where S is given by $S = \sum_{i=1}^{500} (\hat{x}_{T,0,i,\text{SDFM}} - x_{T,0,i})^2 / \sum_{i=1}^{500} (\hat{x}_{T,0,i,\text{DFM}} - x_{T,0,i})^2$ $(x_{T,0,i})^2$, where $\hat{x}_{T,0,i,\text{SDFM}}$ represents the *i*th nowcast of the SDFM model, $\hat{x}_{T,0,i,\text{DFM}}$ represents the *i*th nowcast of the benchmark DFM model, and $x_{T,0,i}$ represents the realisation of the variable of interest at time point *T*.

Table 3: MSNE reduction over 1000 simulated nowcasting exercises restricted to a single penalty for all factors using $T = 200$ observations for $N = 100$ variables

Note: The SDFM model hyper-parameters are validated optimising the BIC. *ρ* refers to the average absolute correlation-coefficients of the measurement errors. The ratios of relative MSNE reductions are computed as $\frac{1}{500} \sum_{i=1}^{500} \mathbb{1} ((\hat{x}_{T,0,i,\text{SDFM}} - x_{T,0,i})^2 < (\hat{x}_{T,0,i,\text{DFM}} - x_{T,0,i})^2)$, where $\hat{x}_{T,0,i,\text{SDFM}}$ repr SDFM model, $\hat{x}_{T,0,i,\text{DFM}}$ represents the *i*th nowcast of the benchmark DFM model, and $x_{T,0,i}$ represents the realisation of the variable of interest at time point *T*.

Table 4: Ratio of relative MSNE reductions over 500 simulated nowcasting exercises restricted to a single penalty for all factors using $T = 200$ observations for $N = 100$ Variables

B Algorithms

In the upcoming section, the following conventions are used. The symbol ⊔ denotes the operation of adding an element to the end of a sequence. Let $\mathcal S$ be a sequence of integer values and $\mathbf{A} = (a_{n,m})_{n=1,m=1}^{N,M}$ be a matrix. Assuming min $\mathcal{S} \geq 1$ and max $\mathcal{S} \leq M$, $\mathbf{A}[\mathcal{S}, \cdot]$ refers to the submatrix of **A** that is constructed by concatenating the rows with index corresponding to the integers in S in order. For a vector $\mathbf{v} = (v_n)_{n=1}^N$, and $\min S \ge 1$ and $\max S \leq N$, $\mathbf{v}[S]$ denotes the subvector consisting of the elements of **v** with corresponding index $n \in \mathcal{S}$. Similarly, $\mathbf{v}[n_1 : n_m]$ refers to the subvector consisting of the elements with index n_1 to index n_m . Adding an element v at the end of a vector is denoted as $[\mathbf{v}, v]$. Analogously, $[\mathbf{v}_1, \mathbf{v}_2]$ concatenates two vectors $\mathbf{v}_1, \mathbf{v}_2$. Initialising an empty vector is denoted as $\mathbf{v} = [\cdot]$. The operation of removing an element v_n from a vector **v** is defined as $\mathbf{v}_1, \mathbf{v}_2$ ($v_1, \ldots, v_{n-1}, v_{n+1}, \ldots, v_N$). For two vectors $\mathbf{v}_1, \mathbf{v}_2$ of equal length, the element-wise division is defined as $\mathbf{v}_1 \oslash \mathbf{v}_2 = (v_{1,1}/v_{1,2}, \ldots, v_{n,1}/v_{n,2}).$

Algorithm 1 Sparse Principal Components Analysis [\(Zou and Hastie,](#page-5-0) [2020\)](#page-5-0)

1: $X' = UDV'$

2: $\mathbf{A} \leftarrow (\mathbf{v}_1, \dots, \mathbf{v}_R)$, where $\mathbf{v}_1, \dots, \mathbf{v}_R$ correspond to the first *R* columns of **V**.

3: Set **A** to a Matrix with entries equal to the double precision floating point maximum

4: Set conversion threshold $\epsilon > 0$

5: **while** $\|\mathbf{A} - \mathbf{A}\|_F > \epsilon$ do

$$
6: \qquad \tilde{\mathbf{A}} \leftarrow \mathbf{A}
$$

- 7: **for** $r \in \{1, ..., R\}$ **do**
- 8: Use Algorithm [2](#page-2-0) to solve

$$
\widehat{\boldsymbol{\lambda}}_r \leftarrow \operatorname*{argmin}_{\boldsymbol{\lambda}_r} \left\{ \left(\boldsymbol{\alpha}_r - \boldsymbol{\lambda}_r \right)' \mathbf{X}_{\tau} \mathbf{X}_{\tau}' \left(\boldsymbol{\alpha} - \boldsymbol{\lambda}_r \right) + \kappa_2 \| \boldsymbol{\lambda}_r \|_2 + \kappa_{1,r} \| \boldsymbol{\lambda}_r \|_1 \right\} \tag{B.1}
$$

- 9: **end for**
- 10: $\boldsymbol{\lambda} \leftarrow (\boldsymbol{\lambda}_1, \ldots, \boldsymbol{\lambda}_R)$
- 11: Compute the singular value decomposition of $\mathbf{X}\mathbf{X}'\hat{\lambda}$, i.e., $\mathbf{X}\mathbf{X}'\hat{\lambda} = \mathbf{U}\mathbf{D}\mathbf{V}'$.
- 12: **A** ← **UV**^{\prime}
- 13: **end while**
- 14: **return** $\widehat{\Lambda} = \widehat{\lambda}$

Algorithm 2 Least Angle Regression [\(Efron et al.,](#page-5-1) [2004;](#page-5-1) [Zou and Hastie,](#page-5-2) [2005,](#page-5-2) [2020\)](#page-5-0)

1: Set *N* to the number of rows of **X**

2: Set *T* to the number of columns of **X**

3:
$$
\mathbf{y} \leftarrow \mathbf{X} \alpha_r
$$

4: $\mathbf{c} \leftarrow \left| \frac{1}{\sqrt{1+\kappa_2}} \mathbf{X} \mathbf{y} \right|$

5: $p \leftarrow \max c$ 6: $\mathcal{I} \leftarrow (1, \ldots, N)$ 7: $\mathcal{A} \leftarrow \emptyset$ 8: $d \leftarrow 0$ 9: $\mathbf{s} \leftarrow [\cdot]$ 10: $\boldsymbol{\lambda}_r \leftarrow \mathbf{0}_N$ 11: $\hat{\mathbf{q}} \leftarrow \mathbf{0}_N$ 12: Set *E* to double precision floating point maximum 13: Set threshold values *M* for $0 < M \leq N$ and/or $\kappa_{1,r}$ 14: **while** 2*p* √ $\overline{1+\kappa_2} > \kappa_{1,r} \wedge |\mathcal{A}| < M$ do 15: $\hat{c} \leftarrow \max |\mathbf{x}_n \mathbf{y}| \text{ for } n \in \mathcal{I} \text{ and } \mathbf{x}_n \in \mathbf{X}$

16: $\hat{n} \leftarrow \operatorname{argmax} |\mathbf{x}_n \mathbf{y}| \text{ for } n \in \mathcal{I} \text{ and } \mathbf{x}_n \in \mathbf{X}$ 16: $\hat{n} \leftarrow \operatorname{argmax} |\mathbf{x}_n \mathbf{y}| \text{ for } n \in \mathcal{I} \text{ and } \mathbf{x}_n \in \mathbf{X}$
17: **if** $d = 0 \land |\mathcal{A}| < N$ **then** if $d = 0 \land |\mathcal{A}| < N$ then 18: $\mathcal{A} \leftarrow \mathcal{A} \sqcup {\hat{n}}$
19: $\mathcal{I} \leftarrow \mathcal{I} \setminus {\hat{n}}$ $\mathcal{I} \leftarrow \mathcal{I} \backslash {\hat{n}}$ 20: **s** ← $[\mathbf{s}, \text{sign}(\widehat{c})]$
21: **if** $|\mathcal{A}| = 1$ **the**: if $|A| = 1$ then 22: **L** ← $\sqrt{\mathbf{x}_n \mathbf{x}_n + \kappa_2}/(1 + \kappa_2)$ 23: **else** 24: Update the lower Cholesky matrix **L** by $\mathbf{x}_{\hat{n}}$ 25: **end if** 26: **end if** 27: **if** $d = 1 \vee |\mathcal{A}| = N$ **then** 28: $d \leftarrow 0$ 29: **end if** 30: $\mathbf{g} \leftarrow \mathbf{s}$ 31: **g** \leftarrow **v**₁, where **v**₁ is the solution to $Lv_1 = g$ 32: **g** \leftarrow **v**₂, where **v**₂ is the solution to $\mathbf{L}'\mathbf{v}_2 = \mathbf{g}$ 33: $a \leftarrow 1/$ √ **g** ′**s** 34: $\mathbf{w} \leftarrow a\mathbf{g}$ 35: **u** ← $\frac{1}{\sqrt{1}}$ $\frac{1}{1+\kappa_2}\mathbf{X}[\mathcal{A},\cdot]' \mathbf{w}, \frac{\sqrt{1+\kappa_2}}{\sqrt{1+\kappa_2}}$ √ *κ*2 $\frac{\sqrt{\kappa_2}}{1+\kappa_2} \mathbf{w}\Big]$ 36: $\boldsymbol{\gamma} \leftarrow -1 \cdot (\boldsymbol{\lambda}_r[\mathcal{A}] \oslash \mathbf{w})$ 37: **if** $0 < \max \gamma$ **then** 38: $\tilde{\gamma} \leftarrow \max \gamma$ 39: $n \leftarrow \operatorname{argmin} \gamma_i \text{ for } \gamma_i \in \gamma$ 40: **else** 41: $\tilde{\gamma} \leftarrow E$ 42: **end if**

43: $\hat{\gamma} \leftarrow \hat{c}/a$ 44: **if** $|\mathcal{A}| < N$ **then** 45: $\alpha \leftarrow \mathbf{X}[\mathcal{A}, \cdot] \mathbf{u}[1:T] + \sqrt{\kappa_2} \mathbf{u}[(T+1):|\mathcal{A}|\right]$ 46: **for** $m \in (1, \ldots, |\mathcal{I}|)$ **do** 47: $h_1 \leftarrow (\hat{c} - c_{i_m})/(a - \alpha_m)$, where $i_m \in \mathcal{I}, c_{i_m} \in \mathbf{c}$, and $\alpha_m \in \mathbf{\alpha}$ 48: $h_2 \leftarrow (\hat{c} + c_{i_m})/(a + \alpha_m)$, where $i_m \in \mathcal{I}$, $c_{i_m} \in \mathbf{c}$, and $\alpha_m \in \mathbf{\alpha}$
49: **if** $0 < h_1 < \hat{\gamma}$ **then** 49: **if** $0 < h_1 < \hat{\gamma}$ **then**
50: $\hat{\gamma} \leftarrow h_1$ 50: $\hat{\gamma} \leftarrow h_1$
51: **end if** 51: **end if** 52: **if** $0 < h_2 < \hat{\gamma}$ then
53: $\hat{\gamma} \leftarrow h_2$ 53: $\widehat{\gamma} \leftarrow h_2$
54: **end if** 54: **end if** 55: **end for** 56: **end if** 57: *γ* $\gamma^{\dagger} \leftarrow \min\{\tilde{\gamma}, \hat{\gamma}\}$ 58: λ $^\dagger \leftarrow \widehat{\boldsymbol{\lambda}}_r$ 59: $r \leftarrow \widehat{\boldsymbol{\lambda}}_r + \gamma^{\dagger}\mathbf{w}$ 60: $\hat{\mathbf{q}} \leftarrow \hat{\mathbf{q}} - \gamma^{\dagger} \mathbf{u}$ 61: *p* $p^{\dagger} \leftarrow p - |\gamma a|$ 62: **if** $2p^{\dagger}\sqrt{1 + \kappa_2} > \kappa_{1,r}$ then 63: $q_1 \leftarrow 2p^{\dagger} \sqrt{1 + \kappa_2}$ 64: $q_2 \leftarrow 2p$ √ $\sqrt{1 + \kappa_2}$ 65: $\hat{\lambda}_r \leftarrow \left(\frac{q_2 - \kappa_{1,r}}{q_2 - q_1}\right)$ $\frac{q_2-\kappa_{1,r}}{q_2-q_1} \widehat{\boldsymbol{\lambda}}_r + \frac{\kappa_{1,r}-q_1}{q_2-q_1}$ $\left(\frac{q_1,r-q_1}{q_2-q_1} \boldsymbol{\lambda}^{\dagger} \right)$ (√ $\sqrt{1 + \kappa_2}$ ⁻¹ 66: $p \leftarrow p^{\dagger}$ 67: **else** 68: **if** $\tilde{\gamma} < \hat{\gamma}$ **then** 69: $d \leftarrow 1$ 70: λ $\hat{\lambda}_r[n] \leftarrow 0$ 71: $\mathcal{I} \leftarrow \mathcal{I} \sqcup \{n\}$ 72: **s** ← $\left| \mathbf{s}, s_{|\mathcal{A}|} \right|$ 73: $\mathcal{A} \leftarrow \mathcal{A} \setminus \{n\}$ 74: Downdate the lower Cholesky matrix **L** by **x***ⁿ* 75: **end if** 76: **end if** 77: **end while** 78: **return** λ_r

References

- Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004). Least angle regression. *The Annals of Statistics*, 32(2):407 – 499.
- Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 67(2):301–320.
- Zou, H. and Hastie, T. (2020). *elasticnet: Elastic-Net for Sparse Estimation and Sparse PCA*. R package version 1.3.