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A Additional Simulation Results

s = 0.00 s = 0.80
ρ̄ ≈ 0.2 ρ̄ ≈ 0.3 ρ̄ ≈ 0.4 ρ̄ ≈ 0.5 ρ̄ ≈ 0.2 ρ̄ ≈ 0.3 ρ̄ ≈ 0.4 ρ̄ ≈ 0.5

R = 1 -0.424 -0.349 -0.059 -0.188 -0.005 -0.004 -0.033 -0.046
R = 2 -0.472 -0.406 -0.160 -0.057 -0.009 -0.009 -0.048 -0.002
R = 3 -0.483 -0.285 -0.064 0.022 -0.321 -0.212 -0.375 0.039
R = 4 -0.211 -0.080 -0.251 -0.199 -0.207 -0.078 -0.004 -0.065

Note: ρ refers to the average absolute correlation-coefficients of the measurement errors. MSNE reductions are computed
as 1−S, where S is given by S =

∑500
i=1(x̂T,0,i,SDFM−xT,0,i)2/

∑500
i=1(x̂T,0,i,DFM−xT,0,i)2, where x̂T,0,i,SDFM represents

the ith nowcast of the SDFM model, x̂T,0,i,DFM represents the ith nowcast of the benchmark DFM model, and xT,0,i

represents the realisation of the variable of interest at time point T .

Table 1: MSNE reduction over 1000 simulated nowcasting exercises restricted to a single
penalty for all factors using T = 100 observations for N = 50 variables
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s = 0.00 s = 0.80
ρ̄ ≈ 0.2 ρ̄ ≈ 0.3 ρ̄ ≈ 0.4 ρ̄ ≈ 0.5 ρ̄ ≈ 0.2 ρ̄ ≈ 0.3 ρ̄ ≈ 0.4 ρ̄ ≈ 0.5

R = 1 0.411 0.415 0.481 0.486 0.513 0.491 0.473 0.450
R = 2 0.403 0.404 0.516 0.509 0.490 0.497 0.527 0.505
R = 3 0.375 0.436 0.480 0.501 0.412 0.420 0.484 0.523
R = 4 0.433 0.452 0.479 0.515 0.447 0.470 0.491 0.522

Note: The SDFM model hyper-parameters are validated optimising the BIC. ρ refers to the average abso-
lute correlation-coefficients of the measurement errors. The ratios of relative MSNE reductions are computed as

1
500

∑500
i=1 1

(
(x̂T,0,i,SDFM − xT,0,i)2 < (x̂T,0,i,DFM − xT,0,i)2

)
, where x̂T,0,i,SDFM represents the ith nowcast of the

SDFM model, x̂T,0,i,DFM represents the ith nowcast of the benchmark DFM model, and xT,0,i represents the realisation
of the variable of interest at time point T .

Table 2: Ratio of relative MSNE reductions over 1000 simulated nowcasting exercises re-
stricted to a single penalty for all factors using T = 200 observations for N = 100 variables

s = 0.00 s = 0.80
ρ̄ ≈ 0.2 ρ̄ ≈ 0.3 ρ̄ ≈ 0.4 ρ̄ ≈ 0.5 ρ̄ ≈ 0.2 ρ̄ ≈ 0.3 ρ̄ ≈ 0.4 ρ̄ ≈ 0.5

R = 1 -0.483 -0.225 -0.212 -0.034 0.017 -0.194 -0.008 -0.022
R = 2 -0.424 -0.049 -0.005 -0.001 -0.024 -0.081 -0.050 -0.109
R = 3 -0.413 0.010 -0.147 0.012 -0.493 -0.089 0.034 0.024
R = 4 -0.358 0.022 0.014 0.013 -0.313 0.038 0.037 -0.060

Note: The SDFM model hyper-parameters are validated optimising the BIC. The SDFM model hyper-parameters
are validated optimising the BIC. ρ refers to the average absolute correlation-coefficients of the measurement errors.
MSNE reductions are computed as 1 − S, where S is given by S =

∑500
i=1(x̂T,0,i,SDFM − xT,0,i)2/

∑500
i=1(x̂T,0,i,DFM −

xT,0,i)2, where x̂T,0,i,SDFM represents the ith nowcast of the SDFM model, x̂T,0,i,DFM represents the ith nowcast of
the benchmark DFM model, and xT,0,i represents the realisation of the variable of interest at time point T .

Table 3: MSNE reduction over 1000 simulated nowcasting exercises restricted to a single
penalty for all factors using T = 200 observations for N = 100 variables

s = 0.00 s = 0.80
ρ̄ ≈ 0.2 ρ̄ ≈ 0.3 ρ̄ ≈ 0.4 ρ̄ ≈ 0.5 ρ̄ ≈ 0.2 ρ̄ ≈ 0.3 ρ̄ ≈ 0.4 ρ̄ ≈ 0.5

R = 1 0.432 0.486 0.479 0.496 0.518 0.493 0.490 0.456
R = 2 0.399 0.510 0.517 0.478 0.486 0.523 0.520 0.523
R = 3 0.435 0.528 0.551 0.510 0.373 0.542 0.550 0.510
R = 4 0.432 0.532 0.538 0.489 0.432 0.544 0.545 0.523

Note: The SDFM model hyper-parameters are validated optimising the BIC. ρ refers to the average abso-
lute correlation-coefficients of the measurement errors. The ratios of relative MSNE reductions are computed as

1
500

∑500
i=1 1

(
(x̂T,0,i,SDFM − xT,0,i)2 < (x̂T,0,i,DFM − xT,0,i)2

)
, where x̂T,0,i,SDFM represents the ith nowcast of the

SDFM model, x̂T,0,i,DFM represents the ith nowcast of the benchmark DFM model, and xT,0,i represents the realisation
of the variable of interest at time point T .

Table 4: Ratio of relative MSNE reductions over 500 simulated nowcasting exercises restricted
to a single penalty for all factors using T = 200 observations for N = 100 Variables
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B Algorithms

In the upcoming section, the following conventions are used. The symbol ⊔ denotes the
operation of adding an element to the end of a sequence. Let S be a sequence of integer
values and A = (an,m)N,M

n=1,m=1 be a matrix. Assuming minS ≥ 1 and max S ≤ M , A[S, ·]
refers to the submatrix of A that is constructed by concatenating the rows with index cor-
responding to the integers in S in order. For a vector v = (vn)N

n=1, and minS ≥ 1 and
max S ≤ N , v[S] denotes the subvector consisting of the elements of v with corresponding
index n ∈ S. Similarly, v[n1 : nm] refers to the subvector consisting of the elements with
index n1 to index nm. Adding an element v at the end of a vector is denoted as [v, v].
Analogously, [v1, v2] concatenates two vectors v1, v2. Initialising an empty vector is de-
noted as v = [·]. The operation of removing an element vn from a vector v is defined as
]v, vn[:= (v1, . . . , vn−1, vn+1, . . . , vN ). For two vectors v1, v2 of equal length, the element-wise
division is defined as v1 ⊘ v2 = (v1,1/v1,2, . . . , vn,1/vn,2).

Algorithm 1 Sparse Principal Components Analysis (Zou and Hastie, 2020)
1: X′ = UDV′

2: A← (v1, . . . , vR), where v1, . . . , vR correspond to the first R columns of V.
3: Set Ã to a Matrix with entries equal to the double precision floating point maximum
4: Set conversion threshold ϵ > 0
5: while ∥A− Ã∥F > ϵ do
6: Ã← A
7: for r ∈ {1, . . . , R} do
8: Use Algorithm 2 to solve

λ̂r ← argmin
λr

{
(αr − λr)′ Xτ X′

τ (α− λr) + κ2∥λr∥2 + κ1,r∥λr∥1
}

(B.1)

9: end for
10: λ̂← (λ̂1, . . . , λ̂R)
11: Compute the singular value decomposition of XX′λ̂, i.e., XX′λ̂ = UDV′.
12: A← UV′

13: end while
14: return Λ̂ = λ̂

Algorithm 2 Least Angle Regression (Efron et al., 2004; Zou and Hastie, 2005, 2020)
1: Set N to the number of rows of X
2: Set T to the number of columns of X
3: y← Xαr

4: c←
∣∣∣ 1√

1+κ2
Xy

∣∣∣
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5: p← max c
6: I ← (1, . . . , N)
7: A ← ∅
8: d← 0
9: s← [·]

10: λ̂r ← 0N

11: q̂← 0N

12: Set E to double precision floating point maximum
13: Set threshold values M for 0 < M ≤ N and/or κ1,r

14: while 2p
√

1 + κ2 > κ1,r ∧ |A| < M do
15: ĉ← max |xny| for n ∈ I and xn ∈ X
16: n̂← argmax|xny| for n ∈ I and xn ∈ X
17: if d = 0 ∧ |A| < N then
18: A ← A⊔ {n̂}
19: I ← I\{n̂}
20: s← [s, sign(ĉ)]
21: if |A| = 1 then
22: L←

√
xnxn + κ2/(1 + κ2)

23: else
24: Update the lower Cholesky matrix L by xn̂

25: end if
26: end if
27: if d = 1 ∨ |A| = N then
28: d← 0
29: end if
30: g← s
31: g← v1, where v1 is the solution to Lv1 = g
32: g← v2, where v2 is the solution to L′v2 = g
33: a← 1/

√
g′s

34: w← ag
35: u←

[
1√

1+κ2
X[A, ·]′w,

√
κ2√

1+κ2
w

]
36: γ ← −1 · (λ̂r[A]⊘w)
37: if 0 < max γ then
38: γ̃ ← max γ

39: n← argminγi for γi ∈ γ

40: else
41: γ̃ ← E

42: end if
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43: γ̂ ← ĉ/a

44: if |A| < N then
45: α← X[A, ·]u[1 : T ] +√κ2u[(T + 1) : |A|]
46: for m ∈ (1, . . . , |I|) do
47: h1 ← (ĉ− cim)/(a− αm), where im ∈ I, cim ∈ c, and αm ∈ α

48: h2 ← (ĉ + cim)/(a + αm), where im ∈ I, cim ∈ c, and αm ∈ α

49: if 0 < h1 < γ̂ then
50: γ̂ ← h1

51: end if
52: if 0 < h2 < γ̂ then
53: γ̂ ← h2

54: end if
55: end for
56: end if
57: γ† ← min{γ̃, γ̂}
58: λ† ← λ̂r

59: λ̂r ← λ̂r + γ†w
60: q̂← q̂ − γ†u
61: p† ← p− |γa|
62: if 2p†√1 + κ2 > κ1,r then
63: q1 ← 2p†√1 + κ2

64: q2 ← 2p
√

1 + κ2

65: λ̂r ←
(

q2−κ1,r

q2−q1
λ̂r + κ1,r−q1

q2−q1
λ†

)
(
√

1 + κ2)−1

66: p← p†

67: else
68: if γ̃ < γ̂ then
69: d← 1
70: λ̂r[n]← 0
71: I ← I ⊔ {n}
72: s←

]
s, s|A|

[
73: A ← A\{n}
74: Downdate the lower Cholesky matrix L by xn

75: end if
76: end if
77: end while
78: return λ̂r
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