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Abstract

Market information shares are widely used in empirical finance to measure one
market’s contributions to price discovery. In contrast to common factor com-
ponents, the literature on market information shares only provides rudimentary
tools to test general hypotheses. Using Monte Carlo simulations, we show that
bootstrap confidence bands proposed by Sapp (2002) perform well if markets have
similar information shares but are too narrow if one market dominates price dis-
covery. We design a new bootstrap-based method to test the ‘one-central-market’
hypothesis and show that our tests have correct size and substantial power against
the null hypothesis. Empirical results in the context of CDS and bonds markets
complement the theoretical analysis.
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1 Introduction

Price discovery is one of the main functions of financial markets. It is of particular
interest to determine which market impounds information first if an asset is traded
on several exchanges. Multiple competing measures to estimate the contribution of a
market to price discovery have been proposed in the literature. Booth et al. (1999)
and Harris et al. (2002a) use common factor components estimated from the Gon-
zalo and Granger (1995) permanent-transitory decomposition (PT/GG). In contrast,
Hasbrouck (1995) constructs information shares based on the common trend represen-
tation by Stock and Watson (1988) incorporating both the system dynamics and the
innovation variances. While the methodology is intuitive and easy to compute, it em-
ploys a Cholesky decomposition of the reduced-form innovation covariance matrix and
therefore depends on the ordering of price series in the model. In practice, the mid-
point between minimum and maximum information share estimates obtained from all
possible permutations of orderings is computed to provide a representative information
share value (Baillie et al., 2002; Carbera et al., 2009; Fricke and Menkhoff, 2011; Dimpfl
et al., 2017). In the remainder of this paper, we refer to these midpoints as HIS. Lien
and Shrestha (2009) propose a modified information share (MIS) which improves over
the Hasbrouck information shares by being order-independent and Lien and Shrestha
(2014) extend their methodology to interrelated markets where prices are cointegrated
but the cointegrating vector does not have to be one-to-one. Putnin, š (2013) provides
a comprehensive discussion about the differences between common factor components
and market information shares. Further important contributions are found in De Jong
and Schotman (2010) where information share measures are based on the covariance
between transitory components and the efficient price and in Grammig and Peter (2013)
who identify tail-dependent information shares from a mixture distribution.

While it is straightforward to conduct inference on price discovery measures based
on the PT/GG decomposition, where hypotheses can directly be stated as restrictions
on the long-run multiplier, it is more difficult to test hypotheses in the context of
market information shares like the HIS or MIS. Paruolo (1997) provides the necessary
tools to conduct asymptotic inference on the long-run impact matrix and its row and
column spaces in cointegrated VAR processes. These tools could in principle be used
to design hypothesis tests for market information shares. However, these methods are
quite complicated and are rarely applied in practice. Sapp (2002) proposes a station-
ary bootstrap algorithm to construct confidence intervals for the HIS. The algorithm
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is also used in Grammig et al. (2005) to asses the estimation precision of information
shares in the context of internationally cross-listed stocks and in Grammig and Peter
(2013) to compare the performance of HIS against tail-dependent information shares.
Since the Sapp-algorithm has not been evaluated in a Monte Carlo study, practition-
ers might be reluctant to use it. Still, the need for a reliable assessment of precision
of information share estimates has been clearly formulated in the literature. For ex-
ample, Harris et al. (2002b) base their critique of market information shares on the
fact that hypothesis tests can easily be conducted under the PT/GG framework but
not for market information shares. They argue that findings of numerical differences
between common factor components and information shares are not meaningful if the
estimation uncertainty is not properly incorporated. A simulation study is conducted
by the authors to show that numerical evidence obtained for common factor compo-
nents against the ‘one-central-market’ hypothesis does not hold up if hypothesis tests
are considered. (Figuerola-Ferretti and Gonzalo, 2010, p. 17) comment on bootstrap
inference and argue that “it is always possible to use some bootstrap methods as in
Sapp (2002) for testing single hypotheses (for instance S1 = 0), but it is unclear how to
proceed for testing joint hypotheses on different IS (for example S1 = S2)”. While it is
certainly difficult to test the ‘equal shares’ null hypothesis in large systems, it amounts
to a single hypothesis in two-variable systems the authors refer to. Further, it is impos-
sible for the percentile method employed by Sapp (2002) to construct valid confidence
bands for the hypothesis that one information share is zero because the algorithm pro-
duces strictly positive information shares. Neither of the authors’ claims are supported
by simulation evidence. Lien and Shrestha (2009) argue that the null hypothesis that
one market does not contribute to price discovery can be tested if the innovations are
uncorrelated. Because this situation is unlikely to occur in practice, hypothesis testing
has to be based on more general assumptions.

This paper addresses the lack of inferential tools for market information shares and
proposes a bootstrap framework for specific hypotheses. Although it is difficult to test
general hypotheses in settings with more than two markets, information shares are
commonly applied to two variable systems (e.g. analysis of spot and futures markets or
cross-listed stocks). From a practitioner’s perspective, two types of null hypotheses are
of interest where it is important to design valid statistical tests. First, we consider the
null hypothesis of equal information shares for both markets, such as spot and futures
for a particular underlying. It might then be of interest to determine which market
contributes significantly more to price discovery than the other one. Formally, we test
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the ‘equal shares’ null hypothesis ISp1 = ISp2 = 0.5. Second, we test the null hypothesis
of ‘one-central-market’ assuming that one market contributes 100% to price discovery
whereas the other market has a zero information share. Formally, we test ISp1 = 0 or
ISp2 = 0, depending on the hypothesized role of both prices. In principle, it is always
possible to make use of the duality between confidence bands and statistical tests to
evaluate hypotheses. One of these approaches should be chosen depending on which
one has better statistical properties in a given situation. We evaluate both approaches
in various situations and derive recommendations based on our simulation study.

In the following, we design a Monte Carlo study to investigate the properties of
the Sapp-algorithm for the ‘equal shares’ and ‘one-central-market’ hypotheses using
different data generating processes (DGP). To the author’s knowledge, the statistical
properties of bootstrap confidence intervals for information shares have not been sys-
tematically investigated yet. It is therefore unclear whether this algorithm yields the
intended coverage and how the length of the confidence bands evolves with increasing
sample sizes, i.e. how powerful the implied hypothesis tests are when they are based on
these confidence intervals. Particularly, it remains an open question how the procedure
can be used to test the ‘one-central-market’ null hypothesis as the percentile method
employed by Sapp (2002) produces confidence bands with strictly positive information
shares so that zero information shares always lie outside of the estimated confidence
band. We therefore propose a studentized version of the Sapp-algorithm to properly
evaluate the ‘one-central-market’ null hypothesis. We can show that the enhanced al-
gorithm maintains good properties in case of ‘equal shares’ but confidence bands fail
to achieve their nominal coverage for zero information shares. Hence, we additionally
design a resampling algorithm to draw data under the null restriction and construct
a valid bootstrap test with data-specific critical values. We show that this test has
the correct empirical size under different data-generating processes and good power in
small samples. Finally, we apply our new bootstrap tests to an empirical illustration
presented in Lien and Shrestha (2014) where the contribution to price discovery of
CDS and bond markets is investigated for a panel of actively traded US companies
using generalized information shares. We show that our methodology allows us to test
the hypotheses that price discovery takes place only in one market which yields different
results from corresponding tests in the PT/GG framework.

The paper is organized as follows. Section 2 introduces the reduced-form vector
error correction model, both information share measures and our bootstrap methods.
Section 3 is devoted to the Monte Carlo simulation study. Section 4 reports the results
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of an empirical application in the context of CDS and bond markets, and Section 5
concludes.

2 Methodology

In this section, we first introduce both information share measures and the underlying
vector error correction model. Second, the procedure to compute bootstrap confidence
intervals proposed by Sapp (2002) is described. Finally, we present a new bootstrap
algorithm to evaluate the ‘one-central-market’ hypothesis.

2.1 Vector error correction model and market information
shares

Following Johansen (1988, 1991)’s notation, the linear VECM for an N × 1 vector of
I(1) price variables is given as

∆pt = Πpt−1 +
K−1∑
i=1

Γi∆pt−i + ut, (1)

where ut is a vector of i.i.d. Gaussian error terms. The N×N parameter matrix Π = αβ′

captures both the long-run equilibrium relations and the adjustment behaviour. The
matrix β contains r cointegrating vectors and α carries the loadings on each cointe-
grating vector. The covariance matrix of the error terms is given by E(utu′t) = Ω and
expresses the contemporaneous linear dependencies for each variable with the other
variables.

As shown in Stock and Watson (1988), the cointegrated system in Equation (1) can
equivalently be written in a common trend representation as follows

pt = p0 + Ψ(1)
t∑
i=1

ui + Ψ∗(L)ut, (2)

where Ψ(L) and Ψ∗(L) are matrix polynomials in the lag operator L derived from the
moving average representation of the process and p0 are initial values. The long-run
impact matrix Ψ(1) denotes the sum of the moving average coefficients and Ψ∗(L) =
(Ψ(L)−Ψ(1))/(1−L)) denotes transitory components. For each period, we can express
the impact of an innovation on each of the prices using Ψ(1)ut. Since the price series
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are cointegrated, the conditions β′Ψ(1) = 0 and Ψ(1)α = 0 hold and we can write

pt = p0 + β⊥(α⊥′Γβ⊥)−1α⊥
′
t∑
i=1

ui + Ψ∗(L)ut, (3)

where Γ = IN −
K−1∑
i=1

Γi, IN is the N ×N identity matrix and ⊥ denotes the orthogonal
complement. The common stochastic trend shared by all price variables is then given
by α⊥′

t∑
i=1

ui which has serially uncorrelated innovations α⊥′ut by construction.
We restrict our analysis to N -variable cointegrated systems with r = N − 1 coin-

tegrating vectors and one common stochastic trend. This means that the cointegrated
systems are driven by one common source of information. Following the empirical price
discovery literature, we perceive the common stochastic trend as the latent efficient
price of one asset which is traded on different exchanges. In these cases, the matrix
Ψ(1) has rank one and identical rows ψ = (ψ1, ψ2, . . . , ψn). The variance of the common
stochastic trend is ψΩψ′. The method proposed by Hasbrouck (1995) first allocates the
contemporaneous correlation between innovations to one market using the Cholesky
factorization Ω = FF ′. Then, the Hasbrouck information share (HIS) is computed as

Sj =
[ψF ]2j
ψΩψ′ , (4)

for each market j. Since the ordering of markets has a substantial effect on the outcome
(except for uncorrelated innovations), all possible permutations of the ordering have to
be considered. Baillie et al. (2002) show that the upper bound in the sequence of HIS
estimates incorporates the series’ own contribution and its correlation with the other
series. The corresponding lower bound only considers the series’ contribution that is
uncorrelated with the other series. In empirical studies, the midpoint between lower
and upper bound is usually taken as the HIS estimate to solve the uniqueness problem.
Although lower and upper bounds of the HIS have a clear economic interpretation, the
discrepancies between orderings become large when the contemporaneous correlation
of disturbances across markets increases.

An alternative measure proposed by Lien and Shrestha (2009) yields an order-
independent information share. Their factorization is based on the innovation cor-
relation matrix Φ = V −1ΩV −1 where V = diag(

√
Ω11,
√

Ω22, . . . ,
√

ΩNN). Further,
the diagonal matrix Λ is defined with diagonal elements equal to the eigenvalues of
the correlation matrix Φ and the regular matrix G where the corresponding eigenvec-
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tors are stacked column-wise. The factorization for this information share measure is
Ω = F ∗(F ∗)′ where F ∗ = [GΛ−1/2G′V −1]−1 and the modified information share (MIS)
is then given by

S∗j =
[ψF ∗]2j
ψΩψ′ . (5)

The methodology is extended by Lien and Shrestha (2014) to include cointegrated sys-
tems where the relationship is not necessarily one-to-one. The generalized information
share (GIS) incorporates the estimated cointegrating vector for the computation of the
respective measures. In contrast to the lower and upper bounds of the HIS and similar
to the HIS midpoint, the MIS (GIS) is lacking economic rationale and mainly has a
statistical interpretation. Lien and Wang (2016) show, using a Monte Carlo study, that
the MIS performs similarly to the HIS measure based upon the upper/lower bound
midpoint.

Finally, we briefly outline the PT/GG framework under which common factor com-
ponents can be obtained. Gonzalo and Granger (1995) propose an alternative decom-
position of pt into permanent and transitory components, where

pt = A1ft + A2zt, (6)

ft = α⊥
′pt is the permanent component and zt = β′pt is the transitory component. The

loading matrices are given by A1 = β⊥(α⊥′β⊥)−1 and A2 = α(β′α)−1. This definition
of the permanent component is different from the Stock-Watson definition because the
changes in ft can be serially correlated (De Jong, 2002). Harris et al. (2002a) suggest
to compute common factor components from elements of α⊥, i.e. from the normalized
orthogonal to the adjustment coefficient matrix. Since the computation of common
factor components is only based on the adjustment dynamics of the cointegrated system,
it does not take the innovation variances into account. Whereas market information
shares measure the contribution of an innovation in market i to the total variance of
the innovation in the permanent component, common factor components measure the
impact of an innovation in market i on the innovation in the permanent component.
One advantage of common factor components over the HIS is its unique determination
of a market’s price discovery contribution.
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2.2 Bootstrap confidence intervals

The bootstrap procedure proposed in Sapp (2002) aims to closely mimic the data so
that confidence intervals can be centered around the estimated HIS midpoints through
successive reestimation of the model. A stationary bootstrap according to Politis and
Romano (1994) is used for this purpose which allows to maintain some degree of auto-
correlation in the residuals. This is of particular importance for empirical applications
where the underlying theoretical model cannot be accurately captured by reduced-from
models. The author resamples blocks of data where the length of each block is de-
termined from a geometric distribution and proposes to use the percentile method to
construct confidence bands around the estimated information shares. Conceptually,
the algorithm employed by Sapp (2002) has some drawbacks as it does not account
for the fact that the range of information shares is bounded on the interval [0, 1]. The
‘one-central-market’ hypothesis leads to information shares of S1 = 0 and S2 = 1 or
vice versa. Hence, the true information shares could only be placed within the confi-
dence band if the lower bound of the confidence band takes on negative values which is
theoretically impossible. It is, however, possible to obtain negative lower bounds of the
confidence bands after studentizing the information shares. Therefore, we introduce a
updated studentized bootstrap confidence band which in principle allows to evaluate
the performance under the ‘one-central-market’ hypothesis. The algorithm is outlined
in the following for a N = 2 variable cointegrated system:1

(1) Estimate the unrestricted VECM.

(2) Compute the information share Ŝj according to Equation (4).

(3) Using the estimated sets of residuals ût, create a pseudo time series set of bootstrap
residuals, ubt , by performing a stationary bootstrap as follows:

i. Randomly sample one set of residuals {û1j , û2j}, j ∈ {1, . . . , T}.

ii. With probability q concatenate the set of residuals immediately following those
obtained in step i to the bootstrap residual sample, so that {û1j+1, û2j+1} is drawn.
With probability 1− q, step i. is repeated. Hence, a new set of residuals is drawn,
{û1k, û2k}, k ∈ {1, . . . , T}.

iii. Repeat until T sets of residuals have been drawn.

(4) Construct a bootstrap series, pbt , by recursively inserting the bootstrapped residuals

1Sapp (2002) describes the algorithm for a N = 5 variable system which does not pose any
additional challenges.
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into the estimated VECM where the initial p differences are given by ∆pbj = {ub1j , ub2j},
j ∈ {1, . . . , p} and the initial p values of pbt are given by pbj = pj , j ∈ {1, . . . , p}.

(5) Use the bootstrap series, pbt , to re-estimate the VECM and compute the corresponding
bootstrap information share Sbj .

(6) Repeat steps 3 to 5 sufficiently often to obtain a bootstrap sample of information shares.

(7) Determine the α-th quantile (cα) and the 1 − α-th quantile (c1−α) of the distribu-
tion of the studentized bootstrap statistic (Sbj − Ŝj) to construct the confidence band
[CIlb;CIub] = [Ŝj + cα; Ŝj + c1−α].

While the algorithm was originally designed for the HIS, we exploit the fact that the
stationary bootstrap is a parametric algorithm based on the reduced-form VECM and
analogously use it for the MIS. Since our simulation study in Section 3 reveals that
bootstrap confidence bands should not be applied to test the ‘one-central-market’ hy-
pothesis, we develop a specific bootstrap test for these cases.

2.3 Bootstrap tests of the ‘one-central-market’ hypothesis

The following discussion of a new bootstrap test for the ‘one-central-market’ hypothesis
is limited to N = 2 variable systems but can straightforwardly be extended to multiple
variable systems. For two variables, the covariance matrix Ω takes the form of

Ω =
 σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

 , (7)

where σ1 (σ2) is the standard deviation of u1t (u2t) and ρ is the correlation between
u1t and u1t. It is easily shown, for example in Baillie et al. (2002), that the Cholesky
decomposition of Ω used to compute the HIS yields the factor

F =
 σ1 0
ρσ2 σ2(1− ρ2)1/2

 . (8)

The first series is the central contributor of new information and the second series’
information share is zero if the numerator of S2 is zero. Hence, it has to hold that

[ψF ]j =
[
ψ1 ψ2

]  0
σ2(1− ρ2)1/2

 = ψ2σ2(1− ρ2)1/2 = 0. (9)
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Because σ2 and (1−ρ2)1/2 cannot be zero, we have to set ψ2 = 0 to generate data under
the null hypothesis. This can be achieved if the first series is strongly exogenous, i.e.
does not adjust to the long-run equilibrium and does not react to the second series in
the short-run. If, however, the first market has zero information share, the condition

[
ψ1 ψ2

]  σ1

ρσ2

 = ψ1σ1 + ψ2ρσ2 = 0 (10)

has to be satisfied. In this case, we have to draw data under the assumption that the
second series is strongly exogenous, ψ1 = 0, which directly implies ψ2 6= 0 so that we
have to exclude the possibility of contemporaneous correlation, i.e. ρ = 0.

In comparison, the MIS is based on a decomposition of Ω which employs the factor,

F ∗ =
0.5(

√
1 + ρ+

√
1− ρ)σ1 0.5(

√
1 + ρ−

√
1− ρ)σ1

0.5(
√

1 + ρ−
√

1− ρ)σ2 0.5(
√

1 + ρ+
√

1− ρ)σ2

 . (11)

The first series has full information share and the second series’ information share is
zero if the condition

[
ψ1 ψ2

] 0.5(
√

1 + ρ−
√

1− ρ)σ1

0.5(
√

1 + ρ+
√

1− ρ)σ2


= 0.5ψ1(

√
1 + ρ−

√
1− ρ)σ1 + 0.5ψ2(

√
1 + ρ+

√
1− ρ)σ2 = 0 (12)

holds. To achieve this, we have to draw data under the restrictions ψ2 = 0 and ρ = 0.
Since the MIS is order-invariant, the complementary condition of zero information share
for the first series is straightforwardly given by ψ1 = 0 and ρ = 0. The ‘one-central-
market’ hypothesis for MIS always requires to destroy any contemporaneous correlation
between u1t and u2t.

Instead of constructing skewed confidence bands around the lower or upper boundary
of the information shares, we draw data under the ‘one-central-market’ null hypothesis
and obtain critical values from the bootstrap distribution of our test statistics. Since
we now use the derivations above to impose restrictions on the reduced-form VECM
coefficient matrices, we do not encounter the problem that the ‘one-central-market’ hy-
pothesis is on the boundary of the parameter space. The restricted bootstrap algorithm
is given in the following for the HIS and the null hypothesis that the second market has
full information share:

(1) Estimate the unrestricted two-variable VECM.
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(2) Compute the information share Ŝj according to Equation (4).

(3) Reestimate the VECM under the restriction of p2 being strongly exogenous,∆p1t

∆p2t

 =

α̃1

0

 [
1 β

] p1t−1

p2t−1

 +

γ̃11 γ̃12

0 γ̃22

 ∆p1t−1

∆p2t−1

 +

e1t

e2t

 ,
and save the residual vector êt.

(4) Generate a bootstrap residual series ebt using residuals from the restricted model. Re-
sample each component of the residual vector individually to destroy any contempora-
neous correlation:

i. Randomly sample one residual element êjk, j ∈ {1, 2}, k ∈ {1, . . . , T}.

ii. With probability q the adjacent residual to the one obtained in step i. is concate-
nated to the bootstrap residual sample, so that êjk+1 is drawn. With probability
1 − q, step i. is repeated. Hence, a new element of the residual vector is drawn,
êjl, j ∈ {1, 2}, l ∈ {1, . . . , T}.

iii. Repeat until T observations of each residual component have been drawn.

(5) Generate a bootstrap series pbt , by recursively inserting the bootstrapped residuals ebt
into the estimated constrained model of step 3. The initial p differences are given by
∆pbj = {ê1j , ê2j}, j ∈ {1, . . . , p} and the initial p values of pbt are given by pbj = pj ,
j ∈ {1, . . . , p}.

(6) Reestimate the unconstrained VECM for the bootstrap series pbt and compute the cor-
responding bootstrap information share Sbj .

(7) Repeating steps 1 to 6 sufficiently often yields a distribution of bootstrap information
shares. Compute the 1− α-th quantile of the bootstrap distribution.

(8) If the information share is greater than the bootstrap critical value, reject the ‘one-
central-market’ hypothesis at the α% significance level.

Since our algorithm only involves OLS estimations, we are confronted with low compu-
tational costs and can draw many bootstrap replications for an arbitrary precision of
the p-value.

Note that the strong exogeneity constraints we put on p2 might create problems if
the test is applied to situation where p1 has an information share close to one. Values
close to one could be driven by the strong exogeneity of the respective variables. Set-
ting the adjustment dynamics of p2 to zero might result in very little adjustment after
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equilibrium errors and could therefore destroy the cointegrating relationship. Conse-
quently, we recommend that the test should be applied with caution if the hypothesized
dominant market has empirical information share of less than 50%.

A simple alternative to the bootstrap algorithm above is a test for strong exogeneity
of one variable corresponding to the hypothesized dominant market, say p1, under
the assumption of contemporaneously uncorrelated reduced-form innovations. This
test can be designed as a variable omission test in the equation of p1, i.e. omission
of the error correction term and all lags of p2. Since Wald tests of restrictions on
the coefficients of cointegrated systems are known to have nonstandard asymptotic
properties, it is advisable to use the test proposed in Dolado and Lütkepohl (1996)
which adds an extra lag for inference.2 However, as we show in the following section,
this test can be oversized for small samples and should only be employed in large-sample
applications. The proposed bootstrap variant has the advantage that it evaluates the
market information share measure directly and, hence, takes the nonlinear computation
and compound error into account.

It is important to emphasize that the ‘one-central-market’ hypothesis for market
information shares is distinctly different from the null hypothesis of no contribution to
price discovery in the PT/GG framework. Whereas the restrictions of strict exogeneity
and uncorrelated innovations are imposed under the null hypothesis for market informa-
tion shares, the likelihood ratio test outlined by Gonzalo and Granger (1995) requires
only weak exogeneity under the null hypothesis. Consequently, using the likelihood
ratio test for market information shares or the restricted bootstrap test for common
factor components potentially leads to wrong conclusions.

3 Simulation results

In our simulation experiments, we consider three DGPs proposed by De Jong (2002)
which have a parametric design based on the reduced-form VECM. Hence, we know the
exact lag length, true parameters and structural information shares. Additionally, we
also consider two economically motivated models discussed in Hasbrouck (2002), Lien
and Shrestha (2009) and Lien and Wang (2016). These processes are based on classical
microstructure models by Roll (1984) and do not have a straightforward reduced-form
representation. In fact, the lag length is of infinite order and our reduced-form VECMs

2We thank an anonymous referee for this suggestion.
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are necessarily misspecified. We still use them to evaluate how robust our parametric
bootstrap procedure is to a misspecification of the lag structure. This could be relevant
for practical applications as the true lag length is usually unknown and the lag structure
has to be truncated using, for example, information criteria.

Our parametric DGPs are based on the VECM∆p1t

∆p2t

 =
α1

α2

 (p1t−1 − p2t−1) +
−0.1 0

0 −0.1

 ∆p1t−1

∆p2t−1

 +
u1t

u2t

 , (13)

where u1t and u2t are i.i.d. processes with variances σ2
1 and σ2

2, respectively. The first
configuration (DGP I.a) is given by α = (−0.5, 0.5)′ and equal variances (σ2

1 = σ2
2 = 1)

and yields a system where both markets have equal information shares. The second
specification (DGP II) shifts more adjustment to the first variable, α = (−0.75, 0.25)′,
but keeps the variances (σ2

1 = σ2
2 = 1) unchanged. This results in a 90% information

share of the second market. Third, we set α = (−1, 0)′ to give the second market a 100%
information share (DGP III.a). In principle, we could choose the innovation variances
to be of equal size, since the ratio of innovation variances does not influence the measure
if one price is strongly exogenous and innovations are uncorrelated. This is in stark
contrast to DGP I.a where the ratio of variances has substantial influence on the value
of the measure. Still, our data are generated with a larger variance for u1t balancing
the different roles of both innovation terms. Whereas the innovation u2t represents the
increment of a random walk process, the innovation u1t drives a stationary process and
needs to have a larger variance to make this relationship distinguishable. Otherwise, the
generated time series p1t and p2t are almost perfectly correlated and it becomes difficult
to estimate parameters of the second equation. Note that a parametric bootstrap
algorithm can be distorted by noisy parameter estimates although the deviation from
zero might not be statistically significant.

The second part of our simulation experiment focusses on microstructural models.
We consider an asset traded in two venues. In the first microstructural model, the
efficient price is driven by non-trade public information (ut). The prices of both markets
are determined by the efficient price and bid-ask bounce. The observed price in market
i = 1, 2 is denoted by pit and the unobserved common stochastic trend (efficient price)
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is denoted by mt. DGP I.b is generating data according to

mt = mt−1 + ut ut ∼ N(0, σ2
u)

qit =

−1 with prob. 1/2

+1 with prob. 1/2
i = 1, 2

pit = mt + ciqit,

where the stochastic elements q1t, q2t and ut are uncorrelated. Both markets have equal
information share if the half-spreads are specified such that c1 = c2 = 1. Further, we
set σ2

u = 1 for our simulations. Although the structural information shares are identical
to DGP I.a, estimation of both information share measures is complicated by the fact
that the process can only be approximated by a reduced-form VECM. Since the process
has a vector moving average (VMA) representation (Hasbrouck, 2002), we have to take
into account that the approximation by fixed lag length VECMs leads to underspecified
models affecting the properties of HIS and MIS.

The second microstructural model considers an efficient price which incorporates
private information. The first price series follows the efficient prices lagged by one
period, while the second price series is equal to the efficient price plus a half-spread.
Therefore, only the second market impounds new information in the efficient price and
the first market has zero information share. The process is denoted by DGP III.b and
is given by

mt = mt−1 + λq2t

qit =

−1 with prob. 1/2

+1 with prob. 1/2
i = 1, 2

p1t = mt−1 + c1q1t

p2t = mt + c2q2t.

A Monte Carlo simulation experiment concerned with bootstrap procedures has to fulfil
B,R → ∞, where R is the number of replications and B is the number of bootstrap
draws. Assuming that the number of bootstrap replications is fixed, every added Monte
Carlo iteration contributes multiplicatively to the overall computational cost. To avoid
this inefficiency, we refer to the ‘Warp-speed’ bootstrap described in Giacomini et al.
(2013). The authors provide a formal proof that it is sufficient to draw only one boot-
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strap replication in each Monte Carlo replication and to evaluate the statistic of interest
against the resulting bootstrap distribution of size R.

The results for the bootstrap confidence bands are reported in Table 3 to Table 6.
We find that the coverage rates for HIS and MIS under the ‘equal shares’ hypothesis
converge to their nominal levels with increasing sample size. Since the lag order for
DGP I.a is correctly specified, we observe that the coverage closest to the nominal level
is reached for q = 0, i.e. i.i.d. draws from the residuals. Accounting for nonexistent
autocorrelation in the residuals leads to confidence bands which are slightly too nar-
row. In contrast, the lag order for DGP I.b is misspecified by construction so that
some autocorrelation is left in the residuals. Accounting for this fact in our stationary
bootstrap procedure, i.e. increasing the probability q to select the adjacent residual
set, guarantees that our bootstrap draws better approximate the observed data. For
empirical applications, it is therefore recommended to evaluate the robustness of test
decisions on the choice of q if lag selection is not straightforward (e.g. in situations
where information criteria and diagnostic tests do not agree unanimously on a specific
lag length).

Panels four and five of Table 3 and Table 5 show that the Sapp-algorithm does not
yield appropriate coverage rates if the true information shares are at the boundaries of
the interval. The confidence bands for DGPs under the ‘one-central-market’ hypothesis
are much too narrow and do not converge to the nominal levels. Turning to the average
length (1/R

R∑
i=1

ciα − ci1−α) and average shape (1/R
R∑
i=1

ciα/c
i
1−α) of bootstrap confidence

intervals (see Table 4 and Table 6), we first observe that the average shape of confidence
bands for DGP I.a and DGP I.b are close to one and therefore symmetric. In contrast,
we find that the average shape of confidence bands for DGP III.a and DGP III.b are
strongly skewed which leads to wrong coverage rates. To investigate this further, we
draw from a model where one market dominates prices discovery but does not have
100% information share. The results for DGP II show that bootstrap confidence bands
in general are too narrow if the average length is large enough to include boundary
values. In these cases, large samples are needed to reach nominal coverage rates. We
observe that the rate of convergence becomes slower, the closer the true information
shares are to the boundaries.

While it seems that the average length of bootstrap confidence intervals for DGP III
are substantially smaller than for DGP I, the average length depends, inter alia, on the
speed of adjustment and maximum lag length which is particularly relevant for processes
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with infinite lag order. Hence, the average lengths cannot be directly compared across
DGPs. Our results suggest that the performance of the Sapp-algorithm depends heavily
on the underlying process. Bootstrap confidence bands should be used cautiously if the
initial information share estimates are too close to their boundaries and, in particular,
should not be used to evaluate the ‘one-central-market’ hypothesis.3

Following up on the shortcomings of the Sapp-algorithm, we use the same ‘one-
central-market’ processes to evaluate our new bootstrap test under zero information
share restrictions. The results are reported in Table 7 to Table 10. The tests for HIS
seem to be slightly undersized but converge slowly to their nominal significance levels.
Similar to the confidence bands, we find that accounting for additional autocorrelation
in the residuals can improve the statistical properties of the test for microstructural
models with infinite lag order (truncation effects) but not for the parametric models
with fixed lag order. Again, the tests for MIS seem to converge faster to their nominal
significance levels. The power against the null hypotheses is evaluated under differ-
ent parametrizations of the DGP in Equation (13). We find that the power converges
to unity for all specifications. As expected, the differences between HIS and MIS are
marginal in large samples. Additionally, we consider alternative strong exogeneity tests
and report our results in Table 11. The DGPs feature slow adjustment generating
noisy cointegrated systems. The Dolado-Lütkepohl test is evaluated against the strong
exogeneity test in a VECM without imposing contemporaneously uncorrelated reduced-
form innovations and the bootstrap test for the MIS. We find that the performances of
the Dolado-Lütkepohl test and the misspecified VECM test depend on the adjustment
coefficient, i.e. on the signal-to-noise ratio, for small to medium sample sizes whereas the
bootstrap variant maintains its nominal size throughout. Size distortions for all tests
vanish in large samples.4 Overall, we find that our proposed restricted bootstrap proce-
dure has statistical properties superior to the Sapp-algorithm if one market dominates
price discovery. Since it also has slightly better properties than the Dolado-Lütkepohl
strong exogeneity test, it should be the method of choice to test the ‘one-central-market’
hypothesis.

3Because the length and shape of bootstrap confidence bands depend on, inter alia, the adjustment
dynamics, innovation variances and the sample size, it is difficult to decide whether information shares
are too close to the boundaries to obtain correct coverage rates. As a general guideline, it is advisable
to discard confidence intervals which include zero or one. These confidence intervals are usually skewed
and do not hold their nominal size.

4Further simulation experiments revealed that the bootstrap test has the highest size-adjusted
power in small to medium sample size out of all tests considered. These results are not reported but
can be obtained from the authors upon request.
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Finally, we consider two specifications of five-variable cointegrated systems to inves-
tigate whether our results for two-variable systems can be extended to larger systems.
We specify both VECMs according to Equation (1), where K = 2, Γ1 = −0.1I5 and

β′ =


1 0 0 0 −1
0 1 0 0 −1
0 0 1 0 −1
0 0 0 1 −1

 . (14)

Using this structure guarantees that both models are driven by one common stochastic
trend. We generate data from two models with different adjustment behavior. The
first model (DGP IV) imposes equal information shares for all variables. Here, the
adjustment coefficient matrix is set to

α =



−0.2 0 0 0
0 −0.2 0 0
0 0 −0.2 0
0 0 0 −0.2

0.2 0.2 0.2 0.2


. (15)

In the second model (DGP V), we generate data under the assumption that the first
price variable does not contribute any adjustment to the long-run equilibrium. This re-
sults in a 100% information share of the first price series. The corresponding adjustment
coefficient matrix is given by

α =



0 0 0 0
0 −0.2 0 0
0 0 −0.2 0
0 0 0 −0.2

0.2 0.2 0.2 0.2


. (16)

The empirical coverage rates for the MIS are reported in Table 12. Since the MIS is
order-invariant, it is straightforward to extend it to N -variable systems. In contrast,
the HIS midpoint would have to be computed over all possible ordering combinations
and therefore does not give accurate estimates for structural information share close to
the boundaries of the interval. We can infer from Table 12 that bootstrap confidence
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bands yield accurate coverage rates for truly equal information shares.5 However, they
are again too narrow if one market dominates price discovery. While coverage rates
for dominated markets are only slightly too narrow, they strongly deviate from their
nominal levels for the dominant market which invalidates tests based on this bootstrap
algorithm. Our restricted bootstrap algorithm specifically designed for the ‘one-central-
market’ hypothesis yields accurate coverage rates.

4 Empirical Application: Price discovery in CDS
and Bond markets

In this section, we revisit the empirical illustration presented in Lien and Shrestha
(2014). The authors investigate the hypothesis that price discovery takes place mainly
in the CDS market which is based on the fact that the CDS market is more liquid
than the bond market. Lower short-selling costs and higher liquidity might attract
traders with private information about the credit risk of an entity which could lead to
faster impounding of new information in the CDS market. They analyze a panel of 16
actively traded CDS with underlying bonds issued by large US corporations over a one
year span reaching from July 1, 2009 to June 30, 2010. We rebuild their dataset from
Thomson Reuters Datastream and report summary statistics in Table 1. We observe
that the average basis which is computed as the average difference between the CDS
spread and bond yield spread slightly deviates from those values reported in Table I
in Lien and Shrestha (2014). Since the bond contracts are identical, we suspect that
the data for some bond contracts have been revised by Thomson Reuters Datastream.
However, the values deviate at most by 10 basispoints and should not influence our
results. Since the relationship between CDS spreads and bond yield spreads is not
necessarily one-to-one, the MIS (or HIS) cannot be directly applied. Consequently, Lien
and Shrestha (2014) propose a generalized information share (GIS) which is based on the
estimated cointegrating vector. The bootstrap algorithms described in Subsection 2.2
and Subsection 2.3 account for the fact that the cointegrating vector can be different
from (1,−1).

5It is important to note that bootstrap confidence intervals cannot be used straightforwardly to
test the equal information shares hypothesis for N > 2. Confidence intervals may overlap, yet there
may be a statistically significant difference between information shares.
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Table 1: Summary Statistics

MSCI Average S & P
No. Firm Name Industry Group Basis Coupon Maturity Ratings
1. American Express Co. Diversified Financial −87 5.500 September 12, 2016 BBB+
2. Avnet, Inc. Technology hardware −145 6.625 September 15, 2016 BBB-

and equipment
3. CMS Energy Corp. Utilities −120 6.875 December 15, 2015 BBB-
4. First Data Corp. Software and services −212 9.875 September 24, 2015 B
5. Halliburton Co. Energy −73 7.530 May 12, 2017 A
6. Lennar Corp. Consumer Durables −205 5.600 May 31, 2015 B+

and apparel
7. Limited Brands Retailing −208 6.900 July 15, 2017 BB+
8. Macy’s, Inc. Retailing −173 7.450 July 15, 2017 BBB-
9. Motorola, Inc. Technology hardware −173 6.000 November 15, 2017 BB+

and equipment
10. Pioneer Natural Energy −192 6.650 March 15, 2017 BB+

Resources Co.
11. Standard Pacific Consumer durables −115 7.000 August 15, 2015 B+

Corp. and apparel
12. Allstate Corp. Insurance −110 6.750 May 15, 2018 A+
13. Hertz Corp. Transportation −213 7.875 January 1, 2014 B+
14. Neiman-Marcus Gr Retailing −178 10.375 October 15, 2015 B+

Incorp.
15. New York Times Co. Media −251 5.000 March 15, 2015 B+
16. Toys R US, Inc. Retailing 100 7.375 October 15, 2018 B

This table provides details of bonds issued by all firms considered in the sample. The average basis is
computed as the difference between the CDS spread and the underlying bond yield spread. Note that
the average basis slightly deviates from those values reported in Table I in Lien and Shrestha (2014).
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Lien and Shrestha (2014) first show that all 16 pairs are cointegrated. Then, they
report the GIS estimates with additional PT/GG common factor components. The
hypotheses that price discovery takes place only in one market is evaluated exclusively
for the PT/GG common factor components because the test can be easily applied as
a likelihood ratio test on the vector of adjustment coefficients. In contrast, the corre-
sponding tests of the ‘one-central-market’ hypotheses for the GIS are not conducted.
Since information shares and common factor components measure different aspects of
the price discovery process, rejection of a hypothesis in the context of common factor
components does not contain any meaning for hypotheses on the GIS. Particularly, the
test in the PT/GG framework amounts to a test for weak exogeneity whereas a test for
strict exogeneity under the assumption of uncorrelated innovations is needed for market
information shares as demonstrated in Section 2. Also, the reported GIS and PT/GG
estimates do not agree with the ordering of information roles for all cases in the original
study. For those reasons, we apply the newly proposed test of the ‘one-central-market’
hypothesis to all pairs and compare our results to the PT/GG results. GIS estimates
and p-values are reported in the first part of Table 2, while common factor components
and the p-values of likelihood ratio tests are reported in the second part of Table 2.

Overall, we can closely replicate the original results reported in Lien and Shrestha
(2014). In most cases we find small numerical differences between the GIS estimates in
Table 2 and those in the original paper which might be attributed to different lag lengths
and slight deviations from the average basis (see Table 1).6 The ordering of information
roles according to the GIS and common factor components is identical for all CDS/bond
pairs except for New York Times Co., where the common factor component of CDS
is 0.574 instead of 0.4613 in the original paper. Similar to Lien and Shrestha (2014),
we find that the GIS and common factor components do not agree on the ordering of
information roles for Limited Brands. The results of the bootstrap test are only in
line with reported PT/GG hypothesis tests for 11 out of 16 pairs (American Express
Co., Halliburton Co., Lennar Corp., Limited Brands, Motorola, Inc., Pioneer Natural
Resources Co., Standard Pacific Corp., Hertz Corp., Neiman-Marcus Gr Corp., New
York Times Co., Toys R US, Inc.). In the remaining five cases (Avnet, Inc., CMS Energy
Corp., First Data Corp., Macy’s, Inc. Allstate Corp.), we find significant contribution
of the bond market to price discovery using the bootstrap test, but would not reject

6It seems that the estimated cointegrated systems are quite noisy. The null hypothesis that the
bond market of Hertz Corp. or Neiman-Marcus Gr Corp. has zero information share is not rejected at
the 10% level although the estimated GIS is 0.280 and 0.169, respectively.
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the null hypothesis in the PT/GG framework. This clearly highlights the need for
additional testing in empirical applications concerned with market information share
measures. Moreover, finding that the ‘one-central-market’ hypothesis is rejected for 11
out of 16 pairs at the 5% significance level, provides sufficient evidence to reconsider
the null hypothesis that the bond market does not contribute substantially to price
discovery. Taking into consideration that the bootstrap test almost exactly holds its
nominal size at T = 200 and shows considerable power against the null hypothesis, we
recommend using the newly proposed test instead of tests under the PT/GG framework
if hypotheses on market information shares are of interest.

5 Conclusion

This paper proposes new inferential tools for the analysis of contributions to price
discovery. Although it has proven difficult to test general hypotheses about market
information shares directly, we identify two important hypotheses and extensively dis-
cuss bootstrap methods to conduct hypothesis tests in these cases. We can show that
bootstrap confidence bands based on the Sapp-algorithm have sufficient coverage in
situations where the contributions of all markets are relatively similar. By contrast,
evaluating the ‘one-central-market’ hypothesis at the bounds of the interval requires a
different statistical approach. In these situations, we recommend to use a bootstrap
test which generates data under the implied parameter restrictions and has improved
statistical properties. Since both approaches are based on parametric bootstrap algo-
rithms, their performance depends on carefully specified reduced-form VECMs. Our
proposed bootstrap methods can be applied in all price discovery studies where infer-
ential statements on market information shares are needed.
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7 Appendix

Table 2: Generalized information shares and hypothesis tests

Generalized Common Factor
Information Share Components

No. Firm Name CDS Bond H0: (0, 1) H0: (1, 0) CDS Bond H0: (0, 1) H0: (1, 0)
1. American Express Co. 0.988 0.012 0.011 0.593 0.982 0.018 0.009 0.940
2. Avnet, Inc. 0.841 0.159 0.000 0.013 1.081 −0.081 0.020 0.080
3. CMS Energy Corp. 0.756 0.244 0.014 0.034 0.757 0.243 0.000 0.100
4. First Data Corp. 0.763 0.237 0.024 0.041 0.826 0.174 0.040 0.640
5. Halliburton Co. 0.070 0.930 0.018 0.001 −0.008 1.008 0.980 0.000
6. Lennar Corp. 0.996 0.004 0.001 0.570 1.155 −0.155 0.000 0.380
7. Limited Brands 0.477 0.523 0.023 0.016 0.682 0.318 0.200 0.170
8. Macy’s, Inc. 0.547 0.453 0.018 0.036 0.645 0.355 0.040 0.070
9. Motorola, Inc. 0.977 0.023 0.016 0.529 1.009 -0.009 0.030 0.970
10. Pioneer Natural Resources Co. 0.378 0.622 0.043 0.010 0.469 0.531 0.150 0.050
11. Standard Pacific Corp. 0.063 0.937 0.221 0.014 0.098 0.902 0.830 0.010
12. Allstate Corp. 0.657 0.343 0.022 0.016 0.755 0.245 0.010 0.080
13. Hertz Corp. 0.720 0.280 0.016 0.146 0.785 0.215 0.040 0.230
14. Neiman-Marcus Gr Corp. 0.831 0.169 0.210 0.105 0.796 0.204 0.050 0.650
15. New York Times Co. 0.333 0.667 0.005 0.048 0.574 0.426 0.030 0.000
16. Toys R US, Inc. 0.264 0.736 0.063 0.014 0.252 0.748 0.160 0.010

Note: The hypothesis that the bond market is the central market and the bond market has zero information share is denoted by H0: (0, 1).
The opposing hypothesis that the CDS market is the central market and the bond market has zero information share is denoted by H0: (1,
0). Note that both null hypotheses have a different meaning for market information shares and in the PT/GG framework. The probability of
drawing the adjacent residual element is q = 0.05. Bootstrap p-values are computed from 800 bootstrap replications.
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Table 3: Empirical coverage rates for bootstrap confidence intervals (HIS)

DGP I.a DGP I.b DGP II DGP III.a DGP III.b
Parameters: α1 = −0.5, α2 = 0.5 c1 = c2 = 1, σu = 1 α1 = −0.75, α2 = 0.25 α1 = −1, α2 = 0 c1 = c2 = 1, λ = 1
Structural IS: 50 50 90 100 100

q 90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99%
T = 200 0.00 89.1 94.6 98.9 92.2 96.4 99.6 86.4 90.7 96.1 77.0 85.8 94.7 72.9 82.5 94.1

0.05 89.0 94.4 98.8 92.0 96.1 99.3 86.5 90.9 96.1 76.9 85.9 95.1 73.3 81.8 94.0
0.10 88.9 94.4 99.0 91.4 96.0 99.3 86.6 90.5 96.2 77.8 86.4 94.8 73.9 83.2 94.7

T = 400 0.00 89.5 94.8 98.9 91.7 96.2 99.4 87.9 92.0 96.5 77.3 86.1 95.1 74.0 83.6 94.1
0.05 89.3 94.6 98.8 91.7 96.1 99.3 88.3 92.1 96.7 76.9 85.7 94.9 75.3 83.5 93.9
0.10 89.3 94.5 99.0 91.6 96.0 99.2 88.2 91.9 96.7 76.8 85.9 95.2 75.2 84.1 94.5

T = 800 0.00 89.9 95.1 98.9 91.4 96.0 99.2 89.3 93.5 97.2 77.5 86.2 95.5 74.3 83.1 94.3
0.05 89.9 95.1 99.1 91.4 95.8 99.3 89.5 93.6 97.6 77.4 85.9 95.6 75.6 84.1 94.2
0.10 90.0 95.2 98.9 91.1 95.8 99.2 89.5 93.9 97.4 77.5 86.4 95.4 75.4 84.1 93.9

T = 1600 0.00 90.1 95.0 99.0 91.3 95.9 99.2 89.4 94.1 98.0 78.3 86.0 95.3 76.0 84.7 95.0
0.05 89.8 95.1 99.1 91.2 95.9 99.2 89.5 94.3 98.1 77.4 86.4 95.5 75.4 84.3 94.8
0.10 89.6 94.4 99.0 91.1 95.6 99.2 89.7 94.3 98.3 77.4 86.4 95.5 74.4 83.8 94.1

Note: We draw R = 25, 000 replications from the DGPs described in De Jong (2002) and Hasbrouck (2002) and apply the ‘Warp-speed’
bootstrap algorithm described in Giacomini et al. (2013) to obtain empirical coverage rates. The structural information shares are computed
for p2 and are expressed in percent. The lag length for DGP I.a, DGP II and DGP III.a is fixed at K = 2. The lag length for DGP I.b and
DGP III.b is determined by Akaike Information Criterion (AIC) and maximum lag length K = 8.
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Table 4: Average length (shape) of bootstrap confidence intervals (HIS)

DGP I.a DGP I.b DGP II DGP III.a DGP III.b
Parameters: α1 = −0.5, α2 = 0.5 c1 = c2 = 1, σu = 1 α1 = −0.75, α2 = 0.25 α1 = −1, α2 = 0 c1 = c2 = 1, λ = 1
Structural IS: 50 50 90 100 100

q 90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99%
T = 200 0.00 0.349 (1.008) 0.415 (1.007) 0.537 (1.000) 0.312 (1.003) 0.383 (0.984) 0.545 (0.989) 0.213 (1.551) 0.265 (1.574) 0.375 (1.615) 0.082 (3.612) 0.110 (3.302) 0.177 (3.035) 0.103 (2.692) 0.140 (2.571) 0.248 (2.631)

0.05 0.347 (0.994) 0.413 (1.000) 0.532 (0.996) 0.309 (1.016) 0.373 (1.010) 0.518 (1.023) 0.213 (1.570) 0.263 (1.586) 0.365 (1.609) 0.083 (3.726) 0.111 (3.356) 0.174 (2.841) 0.105 (2.720) 0.141 (2.637) 0.241 (2.584)
0.10 0.349 (1.004) 0.417 (0.985) 0.540 (1.006) 0.307 (1.011) 0.375 (0.997) 0.527 (0.987) 0.214 (1.552) 0.264 (1.577) 0.373 (1.607) 0.083 (3.501) 0.113 (3.156) 0.181 (3.022) 0.105 (2.663) 0.144 (2.568) 0.257 (2.661)

T = 400 0.00 0.252 (1.000) 0.299 (1.012) 0.395 (1.037) 0.224 (1.014) 0.273 (0.996) 0.387 (0.983) 0.147 (1.406) 0.181 (1.466) 0.248 (1.502) 0.042 (3.702) 0.057 (3.352) 0.090 (2.972) 0.058 (3.006) 0.079 (2.776) 0.134 (2.732)
0.05 0.250 (0.989) 0.297 (0.993) 0.387 (0.987) 0.225 (0.987) 0.275 (0.985) 0.383 (0.966) 0.148 (1.404) 0.180 (1.467) 0.251 (1.562) 0.042 (3.688) 0.056 (3.366) 0.089 (3.011) 0.057 (2.778) 0.079 (2.776) 0.130 (2.703)
0.10 0.248 (1.014) 0.296 (0.995) 0.392 (1.010) 0.223 (0.994) 0.270 (0.990) 0.382 (0.989) 0.146 (1.413) 0.177 (1.466) 0.245 (1.507) 0.041 (3.754) 0.055 (3.310) 0.089 (2.943) 0.057 (2.804) 0.078 (2.680) 0.139 (2.714)

T = 800 0.00 0.181 (1.018) 0.216 (1.013) 0.279 (1.022) 0.162 (1.017) 0.197 (0.993) 0.282 (0.964) 0.104 (1.263) 0.125 (1.311) 0.169 (1.439) 0.021 (3.600) 0.027 (3.252) 0.045 (2.874) 0.031 (2.886) 0.043 (2.828) 0.072 (2.679)
0.05 0.179 (0.995) 0.214 (0.995) 0.278 (0.991) 0.161 (1.003) 0.197 (1.006) 0.277 (0.999) 0.104 (1.264) 0.125 (1.317) 0.166 (1.351) 0.021 (3.673) 0.028 (3.358) 0.046 (2.929) 0.032 (2.818) 0.044 (2.778) 0.072 (2.663)
0.10 0.180 (0.998) 0.216 (0.987) 0.279 (0.968) 0.164 (0.986) 0.201 (0.990) 0.278 (0.975) 0.104 (1.274) 0.125 (1.308) 0.168 (1.419) 0.020 (3.650) 0.028 (3.315) 0.047 (3.062) 0.032 (2.834) 0.043 (2.642) 0.073 (2.776)

T = 1600 0.00 0.127 (0.998) 0.151 (0.992) 0.202 (1.023) 0.122 (1.010) 0.147 (1.019) 0.203 (1.039) 0.073 (1.180) 0.088 (1.226) 0.118 (1.305) 0.010 (3.544) 0.014 (3.287) 0.023 (3.044) 0.018 (2.882) 0.024 (2.788) 0.041 (2.565)
0.05 0.127 (0.991) 0.153 (0.990) 0.202 (1.000) 0.122 (1.016) 0.149 (0.998) 0.206 (1.016) 0.073 (1.182) 0.088 (1.216) 0.118 (1.283) 0.010 (3.604) 0.014 (3.210) 0.022 (2.785) 0.018 (3.072) 0.024 (2.903) 0.041 (2.729)
0.10 0.128 (0.990) 0.152 (0.989) 0.199 (0.992) 0.120 (1.016) 0.147 (1.014) 0.207 (0.964) 0.073 (1.175) 0.087 (1.202) 0.116 (1.230) 0.010 (3.595) 0.014 (3.265) 0.023 (2.912) 0.018 (3.109) 0.024 (2.899) 0.041 (2.873)

Note: We draw R = 25, 000 replications from the DGPs described in De Jong (2002) and Hasbrouck (2002) and apply the ‘Warp-speed’ bootstrap algorithm described
in Giacomini et al. (2013). The structural information shares are computed for p2 and are expressed in percent. The lag length for DGP I.a, DGP II and DGP III.a is
fixed at K = 2. The lag length for DGP I.b and DGP III.b is determined by Akaike Information Criterion (AIC) and maximum lag length K = 8. The average length
is reported first, the average shape is given in parentheses.24



Table 5: Empirical coverage rates for bootstrap confidence intervals (MIS)

DGP I.a DGP I.b DGP II DGP III.a DGP III.b
Parameters: α1 = −0.5, α2 = 0.5 c1 = c2 = 1, σu = 1 α1 = −0.75, α2 = 0.25 α1 = −1, α2 = 0 c1 = c2 = 1, λ = 1
Structural IS: 50 50 90 100 100

q 90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99%
T = 200 0.00 89.2 94.7 99.0 92.1 96.4 99.4 86.9 90.9 96.2 79.6 87.2 95.2 75.0 83.5 94.7

0.05 89.1 94.4 98.8 92.0 96.2 99.5 87.1 91.2 96.3 79.9 87.6 95.7 75.0 83.2 94.3
0.10 89.0 93.6 98.9 91.4 96.0 99.3 87.1 91.0 96.3 80.3 87.6 95.3 75.7 84.4 95.2

T = 400 0.00 89.6 94.7 99.0 91.9 96.1 99.3 88.2 92.4 96.7 79.9 87.5 95.9 76.2 84.8 94.6
0.05 89.4 94.7 98.8 91.8 96.1 99.3 88.5 92.3 96.8 79.7 87.5 95.3 77.1 84.5 94.2
0.10 89.4 94.6 98.9 91.7 95.9 99.3 88.5 92.1 96.8 79.7 87.5 95.7 76.7 85.3 94.9

T = 800 0.00 89.9 95.1 98.9 91.4 95.9 99.2 89.5 93.6 97.3 80.2 87.9 96.0 76.0 84.2 94.9
0.05 90.0 95.1 99.1 91.4 96.0 99.3 89.6 93.8 97.7 80.1 87.5 95.9 77.2 85.2 94.6
0.10 90.1 95.2 98.9 91.1 95.7 99.2 89.7 94.0 97.5 80.5 87.7 95.9 77.1 85.4 94.4

T = 1600 0.00 90.0 94.9 99.0 91.3 95.6 99.2 89.5 94.2 98.1 80.5 87.9 95.6 77.6 85.6 95.3
0.05 90.1 95.3 99.1 91.2 95.9 99.3 89.5 94.3 98.2 80.2 87.9 95.9 77.4 85.2 95.0
0.10 90.1 95.4 99.1 91.1 95.8 99.3 89.7 94.3 98.4 80.1 87.8 95.9 76.2 84.5 94.5

Note: We draw R = 25, 000 replications from the DGPs described in De Jong (2002) and Hasbrouck (2002) and apply the ‘Warp-speed’
bootstrap algorithm described in Giacomini et al. (2013) to obtain empirical coverage rates. The structural information shares are computed
for p2 and are expressed in percent. The lag length for DGP I.a, DGP II and DGP III.a is fixed at K = 2. The lag length for DGP I.b and
DGP II.b is determined by Akaike Information Criterion (AIC) and maximum lag length K = 8.
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Table 6: Average length (shape) of bootstrap confidence intervals (MIS)

DGP I.a DGP I.b DGP II DGP III.a DGP III.b
Parameters: α1 = −0.5, α2 = 0.5 c1 = c2 = 1, σu = 1 α1 = −0.75, α2 = 0.25 α1 = −1, α2 = 0 c1 = c2 = 1, λ = 1
Structural IS: 50 50 90 100 100

q 90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99%
T = 200 0.00 0.351 (1.006) 0.417 (1.008) 0.540 (1.003) 0.382 (1.003) 0.467 (0.981) 0.659 (0.972) 0.214 (1.521) 0.266 (1.565) 0.376 (1.612) 0.080 (3.395) 0.109 (3.200) 0.175 (2.949) 0.102 (2.558) 0.139 (2.511) 0.248 (2.605)

0.05 0.349 (0.996) 0.414 (1.001) 0.536 (0.997) 0.374 (1.001) 0.457 (0.997) 0.646 (1.001) 0.214 (1.542) 0.264 (1.576) 0.366 (1.603) 0.082 (3.514) 0.110 (3.223) 0.172 (2.776) 0.104 (2.603) 0.141 (2.570) 0.241 (2.578)
0.10 0.351 (1.004) 0.419 (0.985) 0.542 (1.009) 0.374 (1.017) 0.457 (1.009) 0.631 (1.002) 0.215 (1.521) 0.265 (1.553) 0.375 (1.596) 0.083 (3.318) 0.111 (3.073) 0.179 (2.941) 0.104 (2.555) 0.143 (2.483) 0.258 (2.608)

T = 400 0.00 0.253 (1.002) 0.300 (1.012) 0.396 (1.036) 0.276 (1.015) 0.333 (0.995) 0.470 (0.996) 0.147 (1.386) 0.181 (1.447) 0.249 (1.508) 0.041 (3.486) 0.055 (3.277) 0.088 (2.858) 0.058 (2.833) 0.078 (2.675) 0.132 (2.647)
0.05 0.250 (0.989) 0.298 (0.992) 0.388 (0.985) 0.275 (0.980) 0.336 (0.966) 0.470 (0.968) 0.148 (1.381) 0.181 (1.454) 0.252 (1.554) 0.041 (3.455) 0.056 (3.180) 0.088 (2.979) 0.057 (2.650) 0.079 (2.721) 0.130 (2.649)
0.10 0.249 (1.011) 0.297 (0.996) 0.394 (1.006) 0.273 (0.993) 0.329 (0.990) 0.461 (0.989) 0.147 (1.389) 0.178 (1.457) 0.245 (1.492) 0.040 (3.495) 0.054 (3.165) 0.089 (2.914) 0.057 (2.714) 0.078 (2.592) 0.139 (2.672)

T = 800 0.00 0.181 (1.018) 0.216 (1.012) 0.279 (1.021) 0.199 (1.014) 0.242 (0.989) 0.345 (0.976) 0.104 (1.251) 0.126 (1.304) 0.169 (1.433) 0.020 (3.379) 0.027 (3.107) 0.044 (2.779) 0.031 (2.764) 0.042 (2.726) 0.072 (2.603)
0.05 0.179 (0.997) 0.214 (0.995) 0.278 (0.990) 0.198 (1.010) 0.241 (1.001) 0.339 (0.986) 0.104 (1.252) 0.125 (1.304) 0.166 (1.337) 0.021 (3.464) 0.028 (3.181) 0.045 (2.864) 0.032 (2.716) 0.043 (2.682) 0.072 (2.604)
0.10 0.180 (0.998) 0.216 (0.986) 0.279 (0.969) 0.200 (0.986) 0.245 (0.996) 0.340 (0.979) 0.104 (1.260) 0.125 (1.298) 0.168 (1.415) 0.020 (3.374) 0.027 (3.211) 0.046 (3.016) 0.032 (2.705) 0.043 (2.537) 0.072 (2.710)

T = 1600 0.00 0.127 (0.998) 0.152 (0.992) 0.202 (1.023) 0.149 (1.010) 0.180 (1.024) 0.248 (1.024) 0.073 (1.172) 0.088 (1.219) 0.118 (1.291) 0.010 (3.360) 0.014 (3.110) 0.023 (3.003) 0.017 (2.783) 0.024 (2.717) 0.041 (2.518)
0.05 0.127 (0.990) 0.153 (0.990) 0.203 (1.003) 0.149 (1.014) 0.182 (0.999) 0.252 (1.015) 0.073 (1.173) 0.088 (1.209) 0.118 (1.275) 0.010 (3.414) 0.014 (3.082) 0.022 (2.720) 0.018 (2.900) 0.024 (2.834) 0.041 (2.721)
0.10 0.128 (0.989) 0.152 (0.989) 0.199 (0.992) 0.147 (1.016) 0.179 (1.017) 0.254 (0.968) 0.073 (1.169) 0.087 (1.195) 0.116 (1.220) 0.010 (3.382) 0.014 (3.113) 0.023 (2.864) 0.017 (2.961) 0.024 (2.844) 0.041 (2.811)

Note: We draw R = 25, 000 replications from the DGPs described in De Jong (2002) and Hasbrouck (2002) and apply the ‘Warp-speed’ bootstrap algorithm described
in Giacomini et al. (2013). The structural information shares are computed for p2 and are expressed in percent. The lag length for DGP I.a, DGP II and DGP III.a is
fixed at K = 2. The lag length for DGP I.b and DGP II.b is determined by Akaike Information Criterion (AIC) and maximum lag length K = 8. The average length is
reported first, the average shape is given in parentheses.26



Table 7: Empirical confidence levels for the ‘one-central-market’ hypothesis test (HIS)

DGP III.a DGP III.b
Parameters: α1 = −1, α2 = 0 c1 = c2 = 1, λ = 1
Structural IS: 100 100

q 90% 95% 99% 90% 95% 99%
T = 200 0.00 91.4 96.1 99.4 92.3 97.0 99.8

0.05 91.4 96.1 99.5 92.2 96.8 99.8
0.10 91.2 96.5 99.6 93.2 97.7 99.8

T = 400 0.00 90.7 95.3 99.0 90.2 95.5 99.4
0.05 90.7 95.4 99.3 90.0 95.3 99.4
0.10 91.8 96.2 99.3 90.7 96.0 99.6

T = 800 0.00 90.4 95.1 99.1 88.8 94.4 98.9
0.05 91.0 95.6 99.3 89.6 94.9 99.2
0.10 91.2 95.8 99.3 90.7 95.5 99.3

T = 1600 0.00 90.5 95.3 99.1 87.6 93.4 98.7
0.05 90.8 95.5 99.2 89.0 94.4 99.0
0.10 91.2 95.9 99.2 90.4 95.3 99.3

Note: We draw R = 25, 000 replications from the DGPs described in De Jong (2002) and Hasbrouck (2002) and apply the
‘Warp-speed’ bootstrap algorithm described in Giacomini et al. (2013) to obtain bootstrap distributions. The structural
information shares are computed for p2 and are expressed in percent. The lag length for DGP III.a is fixed at K = 2,
while the lag length for DGP III.b is determined by Akaike Information Criterion (AIC) and maximum lag length K = 8.
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Table 8: Empirical confidence levels for the ‘one-central-market’ hypothesis test (MIS)

DGP III.a DGP III.b
Parameters: α1 = −1, α2 = 0 c1 = c2 = 1, λ = 1
Structural IS: 100 100

q 90% 95% 99% 90% 95% 99%
T = 200 0.00 90.5 95.8 99.3 88.1 94.5 99.4

0.05 90.1 95.1 99.0 87.9 94.0 99.5
0.10 90.4 95.1 99.0 89.2 95.3 99.6

T = 400 0.00 91.2 95.7 99.2 87.9 94.0 99.1
0.05 90.4 95.0 99.1 87.8 93.9 99.2
0.10 90.1 95.0 98.9 88.6 94.7 99.5

T = 800 0.00 90.9 95.8 99.2 87.5 93.5 98.7
0.05 90.7 95.3 99.2 88.3 94.1 99.0
0.10 90.2 95.0 99.1 89.5 94.9 99.2

T = 1600 0.00 91.0 95.9 99.3 86.9 92.8 98.6
0.05 90.8 95.4 99.3 88.4 94.0 98.8
0.10 90.5 95.2 99.2 89.7 94.8 99.1

Note: We draw R = 25, 000 replications from the DGPs described in De Jong (2002) and Hasbrouck (2002) and apply the
‘Warp-speed’ bootstrap algorithm described in Giacomini et al. (2013) to obtain bootstrap distributions. The structural
information shares are computed for p2 and are expressed in percent. The lag length for DGP III.a is fixed at K = 2,
while the lag length for DGP III.b is determined by Akaike Information Criterion (AIC) and maximum lag length K = 8.
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Table 9: Size-adjusted power of bootstrap test (HIS)

Hypothesis: ‘one-central-market’

Parameters: α1 = −0.9, α2 = 0.1 α1 = −0.75, α2 = 0.25 α1 = −0.5, α2 = 0.5
σ1 = 1, σ2 = 1, ρ = 0 σ1 = 1, σ2 = 1, ρ = 0 σ1 = 1, σ2 = 1, ρ = 0

Structural IS: ≈ 99 90 50
T 10% 5% 1% 10% 5% 1% 10% 5% 1%
200 21.4 12.3 3.3 91.3 83.2 57.5 100 100 100
400 39.4 26.0 8.3 99.7 99.0 92.9 100 100 100
800 66.8 54.1 24.9 100 100 100 100 100 100
1600 92.1 85.1 63.3 100 100 100 100 100 100

Parameters: α1 = −0.2, α2 = 0.2 α1 = −0.2, α2 = 0.2 α1 = −0.2, α2 = 0.2
σ1 = 1, σ2 = 16, ρ = 0.5 σ1 = 1, σ2 = 8, ρ = 0.5 σ1 = 1, σ2 = 4, ρ = 0.5

Structural IS: ≈ 85 ≈ 82 ≈ 77
T 10% 5% 1% 10% 5% 1% 10% 5% 1%
200 75.1 56.1 16.8 94.8 85.6 48.7 98.8 96.2 76.4
400 97.2 91.7 62.6 99.9 99.6 95.4 100 100 99.6
800 100 100 99.0 100 100 100 100 100 100
1600 100 100 100 100 100 100 100 100 100

Note: We draw R = 10, 000 replications from the DGPs described in De Jong (2002) and apply the ‘Warp-speed’
bootstrap algorithm described in Giacomini et al. (2013) to obtain bootstrap distributions. The structural information
shares are computed for p2 and are expressed in percent. The lag length is fixed at K = 2. The probability to draw
adjacent residuals is set to q = 0.1.
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Table 10: Size-adjusted power of bootstrap test (MIS)

Hypothesis: ‘one-central-market’

Parameters: α1 = −0.9, α2 = 0.1 α1 = −0.75, α2 = 0.25 α1 = −0.5, α2 = 0.5
σ1 = 1, σ2 = 1, ρ = 0 σ1 = 1, σ2 = 1, ρ = 0 σ1 = 1, σ2 = 1, ρ = 0

Structural IS: ≈ 99 90 50
T 10% 5% 1% 10% 5% 1% 10% 5% 1%
200 24.4 15.1 4.9 88.4 80.1 56.8 100 100 100
400 40.5 27.8 10.0 99.3 98.3 91.7 100 100 100
800 66.6 54.7 26.1 100 100 100 100 100 100
1600 91.6 84.5 63.5 100 100 100 100 100 100

Parameters: α1 = −0.2, α2 = 0.2 α1 = −0.2, α2 = 0.2 α1 = −0.2, α2 = 0.2
σ1 = 1, σ2 = 16, ρ = 0.5 σ1 = 1, σ2 = 8, ρ = 0.5 σ1 = 1, σ2 = 4, ρ = 0.5

Structural IS: ≈ 91 ≈ 87 ≈ 80
T 10% 5% 1% 10% 5% 1% 10% 5% 1%
200 75.1 56.1 16.8 91.8 81.8 47.5 97.4 93.1 71.1
400 97.2 91.7 62.6 99.7 99.2 93.2 100 99.9 99.0
800 100 100 99.0 100 100 100 100 100 100
1600 100 100 100 100 100 100 100 100 100

Note: We draw R = 10, 000 replications from the DGPs described in De Jong (2002) and apply the ‘Warp-speed’
bootstrap algorithm described in Giacomini et al. (2013) to obtain bootstrap distributions. The structural information
shares are computed for p2 and are expressed in percent. The lag length is fixed at K = 2. The probability to draw
adjacent residuals is set to q = 0.1.
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Table 11: Empirical confidence levels for strict exogeneity tests

DGP III.a VECM Dolado-Lütkepohl Bootstrap (MIS)
Parameters: α1 = −0.05, α2 = 0
Structural IS: 100

T 90% 95% 99% 90% 95% 99% 90% 95% 99%
200 83.0 90.4 97.2 84.8 91.8 98.7 90.7 94.8 98.7
400 87.1 92.3 98.6 87.3 93.4 98.8 90.5 94.7 98.8
800 89.4 94.9 99.0 89.4 94.8 98.8 90.2 95.1 98.9

Parameters: α1 = −0.1, α2 = 0
Structural IS: 100

T 90% 95% 99% 90% 95% 99% 90% 95% 99%
200 86.1 92.4 98.2 86.8 92.4 98.8 90.4 95.2 98.7
400 88.2 93.6 98.8 88.6 94.1 98.9 90.5 95.1 98.9
800 90.0 95.0 98.8 89.7 94.6 99.0 90.5 95.0 98.9

Parameters: α1 = −0.2, α2 = 0
Structural IS: 100

T 90% 95% 99% 90% 95% 99% 90% 95% 99%
200 87.8 93.4 98.8 87.3 93.7 99.0 91.1 95.2 98.6
400 88.4 94.2 98.8 88.9 94.2 98.9 90.6 95.1 98.7
800 89.6 95.1 99.0 89.7 95.1 99.1 90.1 95.0 98.9

Note: We draw R = 10, 000 replications from the DGP III.a and apply the ‘Warp-speed’ bootstrap algorithm described
in Giacomini et al. (2013) to obtain bootstrap distributions. To obtain noisy cointegration systems, we choose σ2

1 = 1,
σ2

2 = 5, ρ = 0 and slow speeds of adjustment. The structural information shares are computed for p2 and are expressed
in percent. The lag length is fixed at K = 2. The probability to draw adjacent residuals is set to q = 0.1.
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Table 12: Empirical coverage rates for five-variable systems (MIS)

DGP IV DGP V DGP V
Method: Sapp Sapp Restricted

Structural IS: 20 20 20 20 20 100 0 0 0 0 100 0 0 0 0
Nominal Conf.: 90 %

T

200 89.5 89.8 89.1 90.0 90.1 57.2 83.4 83.3 82.7 83.4 85.8 86.1 86.7 87.8 85.5
400 88.3 88.5 89.6 89.0 89.9 56.2 80.2 82.4 81.1 80.0 88.6 87.8 87.9 89.1 88.7
800 89.2 88.2 88.6 88.0 88.3 54.8 82.0 81.8 80.7 81.4 89.1 89.7 89.0 89.3 88.8
1600 89.1 88.8 89.2 89.2 89.2 54.9 81.9 81.0 81.6 80.7 90.9 90.4 91.6 90.9 89.6

Nominal Conf.: 95 %
T

200 93.2 93.5 92.1 94.0 93.5 72.9 89.9 90.0 89.8 89.4 94.0 93.4 93.7 93.2 92.0
400 93.5 93.5 94.1 94.1 94.3 73.3 87.7 89.7 88.6 88.0 94.3 93.7 94.5 94.4 94.3
800 94.5 94.2 93.8 93.8 94.0 73.3 88.6 88.2 88.7 89.4 94.5 94.7 94.1 94.5 94.2
1600 94.4 94.1 94.9 94.4 93.9 72.5 88.9 87.9 88.1 88.9 95.6 94.7 95.6 95.0 94.2

Nominal Conf.: 99 %
T

200 97.6 97.6 97.2 97.8 97.7 86.7 96.8 97.5 97.3 97.1 98.7 98.8 99.0 98.3 97.9
400 97.3 97.7 97.4 97.3 97.8 92.0 96.0 96.9 96.0 96.4 99.1 98.4 99.0 99.0 98.4
800 97.7 98.2 98.5 97.5 98.0 91.3 96.8 95.6 96.3 96.3 98.7 98.9 98.6 98.5 98.8
1600 98.4 98.0 98.4 98.2 98.3 91.1 96.1 96.7 96.8 96.4 98.8 99.0 99.0 99.0 98.6

Note: We draw R = 25, 000 replications from a five-variable VECM and apply the ‘Warp-speed’ bootstrap algorithm described in Giacomini
et al. (2013) to obtain bootstrap distributions. The structural information shares are computed for (p1, p2, p3, p4, p5) and are expressed in
percent. The lag length is fixed at K = 2. The probability to draw adjacent residuals is set to q = 0.1.
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