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Abstract

This paper presents results concerning the performance of bootstrap algorithms for hy-
pothesis tests in cointegrating polynomial regressions. A sieve bootstrap procedure is
suggested to repeatedly draw from the autocorrelated innovation process driving the coin-
tegrated system. Monte Carlo simulations show that the proposed procedure leads to
smaller size distortions over the usual asymptotic approximations. A replication of the
empirical EKC analysis in Wagner (2015) emphasizes that the improved size properties of
the bootstrap tests can substantially alter the test decision in practice.
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1 Introduction

Empirical studies investigating the so-called environmental Kuznets curve (EKC) hypoth-
esis, an inverted U-shaped relationship between economic activity and measures of pollution
or emissions, rely on cointegrated polynomial regressions (CPR) and are often hampered by
(very) small sample sizes. For example, Wagner (2015) studies the EKC hypothesis using
yearly data for 19 early industrialized countries over the period 1870–2000. Since the data on
carbon dioxide and sulphur dioxide emissions are usually not available at a higher frequency,
researchers are often left with less than 200 observations to estimate their models. Although
the OLS estimator has very high convergence rates for the coefficients in CPRs, to conduct
proper inference, the FM-OLS estimator is needed but it builds on long-run (co)variance esti-
mators with substantially slower convergence rates. Therefore, using asymptotic approxima-
tions for inference can potentially lead to size distortions and reduced power for hypothesis
testing. Wagner and Hong (2016) show that inference based on the FM-OLS reduces size
distortions compared with tests based on the asymptotically invalid OLS standard errors.
However, substantial size distortions are still present for moderate sample sizes. Furthermore,
the size-adjustments used in Wagner and Hong (2016) for simulated data cannot be straight-
forwardly applied by practitioners because the severity of the size distortions depend on the
regressor endogeneity which is unknown in empirical applications.

One strategy to improve the small sample properties of hypothesis test is bootstrapping.
Different methods are available to bootstrap time series regressions (see Palm et al., 2008,
for a recent overview). Particularly, the sieve bootstrap has been successfully applied in
regressions that involve (potentially) nonstationary processes, for example in the context of
unit root testing (Chang and Park, 2003; Palm et al., 2008), or VAR modelling (Swensen,
2006). For cointegrating regressions, Li and Maddala (1997) show that bootstrapping can lead
to substantial improvements over asymptotic approximations and Psaradakis (2001) proposes
a sieve bootstrap that outperforms their block bootstrap approach. Further applications of
the bootstrap in cointegrating regressions can be found in Chang et al. (2006), Shin and
Hwang (2013) and Schild and Schweikert (2019).

In this paper, we propose a bootstrap algorithm for inference in CPRs based on the sieve
bootstrap for the innovation process driving the cointegrated system. The tests’ finite sample
performance is evaluated in Monte Carlo simulations using the same parametrization as in
Wagner and Hong (2016). Assuming that the number of bootstrap replications is fixed, every
added Monte Carlo iteration contributes multiplicatively to the overall computational cost
when evaluating such bootstrap methods. To avoid this inefficiency, we refer to the ‘Warp-
speed’ bootstrap described in Giacomini et al. (2013). Our results show that the bootstrap
has much smaller size distortions compared with asymptotic approximations proposed in the
literature. Moreover, these size distortions are in the conservative direction which makes
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these tests easier to handle for practitioners. The size-adjusted power is comparable to the
asymptotic approximation for tests of single hypothesis about the coefficient of the quadratic
term. This does not hold for the corresponding tests about the coefficient of the linear term.
Differences in relative performance can be explained by the different convergence rates of the
FM-OLS estimator for linear and quadratic terms in the CPR.

To illustrate the importance of maintaining the nominal size for hypothesis tests in CPRs,
we replicate the empirical study in Wagner (2015) and specifically focus on the significance test
for the quadratic term. This test is often conducted in empirical studies to find out whether
the functional form assumed under the EKC hypothesis provides an adequate fit to the data.
Applying the bootstrap algorithm in addition to the asymptotic approximation shows that
the picture is much more ambiguous for developed countries than previously believed.

The remainder of this paper is structured as follows: we briefly outline the CPR methodol-
ogy and describe the bootstrap algorithm in Section 2. We discuss our simulation experiments
in Section 3, present the empirical application in Section 4, and conclude in Section 5.

2 Methodology

The notation chosen for this section closely follows Wagner and Hong (2016). To simplify the
exposition and without loss of generality, we focus on cointegrating polynomial regressions
involving a single regressor variable xt. Further, we restrict our discussion to CPRs with a
constant and a linear trend:

yt = c+ δt+ β1xt + · · ·+ βqx
q
t + ut, t = 1, . . . , T, (1)

where xt is I(1), ∆xt = vt, q denotes the polynomial order, and ut is a stationary error
term. The T × (q + 2) matrix Z := (1, t, xt, . . . , xqt ) contains the regressors and θ contains
the corresponding coefficients. We further define the vector stochastic process {ξt}t∈Z :=
{(ut, vt)}t∈Z. Then, we can define its long-run covariance matrix

Ω :=
∞∑

h=−∞
E(ξ0ξ

′
h) =

(
Ωuu Ωuv

Ωvu Ωvv

)
. (2)

Analogously, we define the one-sided long-run covariance matrix

∆ :=
∞∑
h=0

E(ξ0ξ
′
h) =

(
∆uu ∆uv

∆vu ∆vv

)
, (3)

and ωu·v = Ωuu − ΩuvΩ−1
vv Ωvu.

The FM-OLS estimator applied to Equation (1) is based on two transformations. The
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first transformation involves the dependent variable and requires a consistent estimator for
the long-run covariance matrix:

y+
t = yt −∆xtΩ̂−1

vv Ω̂vu. (4)

For the second transformation, we need the estimator ∆̂+
vu = ∆̂vu − Ω̂uvΩ̂−1

vv ∆̂vv to build the
correction term

A∗ = ∆̂+
vu



0
0
T

2
∑
xt

...
q
∑
xq−1
t


. (5)

Finally, the FM-OLS estimator is given by θ+ = (Z ′Z)−1(Z ′y+ − A∗) and a consistent es-
timator of its variance is ω̂u·v(Z ′Z)−1. The corresponding t-statistics for single coefficient
hypothesis have asymptotically standard normal distribution.

Next, we propose a bootstrap method for inference in CPRs. To test null hypotheses in
the form of H0 : βi = βi,0, i ∈ {1, . . . , q} against the two-sided alternative, we use the following
sieve bootstrap algorithm:

1. Compute the residuals {û+
t = (yt −Zθ+

0 ,∆xt)′}Tt=1, where θ+
0 is the FM-OLS estimator

under the null hypothesis, i.e., the i-th element is substituted by the coefficient under
the null hypothesis.

2. Estimate the VAR(p) model for {û+
t }Tt=1 to obtain the coefficients Φ1, . . . ,Φp and save

the residuals from this regression {êt}Tt=1.

3. Center the estimated residuals {êt}Tt=1 and draw a random sample from the centered
residuals to obtain a bootstrap sample {e∗t }Tt=1. Construct the bootstrap noise series
{u∗t }Tt=1 using the recursion

u∗t =
p∑
j=1

Φ̂ju
∗
t−j + e∗t , (6)

where the initial p values are given by u∗t = û+
t .

4. Using the partition u∗t = (u∗1t, u∗2t)′, generate the bootstrap replicate {x∗t }Tt=1 according
to

x∗t = x∗t−1 + u∗2t, x∗0 = 0, (7)

and construct the matrix Z∗ = (1, t, x∗t , . . . , x
∗q
t ). Build the bootstrap replicate {y∗t }Tt=1
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according to
y∗t = Z∗θ+

0 + u∗1t. (8)

5. Estimate θ+ using the bootstrap sample {(x∗t , y∗t )}Tt=1 and compute the associated t-
statistic for H0 : βi = βi,0.

6. Repeat Steps 3-5 sufficiently often to obtain a bootstrap sample of t-statistics.

7. Obtain a bootstrap estimate of the critical values at the α significance level from the
(α/2)-th and (1−α/2)-th quantiles of the empirical bootstrap distribution of t-statistics.

The bootstrap critical value can then be used as a bootstrap alternative to the usual
asymptotically standard normal t-test approximations. Selecting the unknown lag order p in
the sieve bootstrap can be based on the familiar Akaike information criterion (Psaradakis,
2001). We follow Schwert (1989) and let the maximum lag length from which the AIC selects
the optimal value increase with the sample size. The long-run covariance matrices needed
for the computation of the FM-OLS estimator and test statistics based upon it are obtained
using the Bartlett and Quadratic Spectral (QS) kernels. For each kernel, we consider two
bandwidth choices: (i) the data-dependent rule of Andrews (1991), and (ii) the sample size
dependent rule of Newey and West (1994), i.e., b4(T/100)2/9c.

Additionally, we can test s linearly independent restrictions of the form

H0 : Rθ = r, (9)

where R ∈ Rs×(q+2) with full rank s and r ∈ Rs. This is accomplished by evaluating the Wald
statistic

W = (Rθ̂+ − r)′[ω̂u·vR(Z ′Z)−1R′]−1(Rθ̂+ − r), (10)

which is asymptotically χ2
s distributed under the null hypothesis. The bootstrapped equiva-

lent, in principle, uses the same algorithm as outlined above, applying the linear restrictions
in step 1 and computing the corresponding Wald statistic in step 5. The bootstrap critical
value is then computed for the (1− α)-th quantile of the empirical bootstrap distribution of
Wald statistics.

3 Finite sample performance

For our simulation study, we adopt the same data-generating process for the quadratic coin-
tegrating polynomial regression model that is used in Wagner and Hong (2016):

yt = c+ δt+ β1xt + β2x
2
t + ut, (11)
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where vt = ∆xt and ut are generated as:

ut = ρ1ut−1 + e1,t + ρ2e2,t, u0 = 0,

vt = e2,t + 0.5 e2,t−1,

and (e1,t, e2,t)′ ∼ N (0, I2). The parameter ρ1 controls the autocorrelation in the error term ut

and the parameter ρ2 determines the degree of regressor endogeneity. The coefficient values
are set to c = δ = 1, β1 = 5, and β2 = −0.3.

First, we conduct experiments to determine the empirical size of the t-tests. Our results
are reported in Table 1. The values for the (asymptotically invalid) OLS estimator and those
of both asymptotic approximations, using bandwidth choice (i) and (ii), for the FM-OLS
estimator are largely identical to the values reported in Table C4 in Wagner and Hong (2016).
The small differences can be explained by the larger number of replications (10,000 instead
of 5,000) we employ to ensure that these values can be compared with the ‘Warp-speed’
bootstrap results. While accounting for the serial correlation and endogeneity by the FM-
OLS estimator improves the size properties in comparison to the standard OLS approach,
substantial size distortions remain for higher levels of regressor endogeneity.

We find that our sieve bootstrap has better size properties than the asymptotic approxi-
mations. For example, in case of T = 200 and ρ1 = ρ2 = 0.8, the asymptotic approximations
still exhibit size distortions of more than five times their nominal value. Instead, the boot-
strap tests are almost exact when testing β2 and they tend to be too conservative in case of
β1. For all parameter configurations, we find that the asymptotic approximations respond
only minimally to an increased sample size from T = 100 to T = 200. A finding that is
also reported in Wagner and Hong (2016). The same holds for the bootstrap tests which is
not surprising since they are based on the FM-OLS estimator and its properties depend on
nonparametric estimators of the long-run (co)variances with slow convergence rates. In case
of β2, we already obtain an empirical size that very close to its nominal size for T = 100.
The pattern of relative performances are largely independent of kernel and bandwidth choices
across parameterizations.

Second, we depict the size-adjusted power curves of single hypothesis tests for ρ1 = ρ2 =
0.6 in Figure 1. It turns out that the bootstrap has comparable size-adjusted power for β2

(roughly at most within 10 percentage points for the analyzed range of values) but it performs
much worse for β1. This finding can be explained by the higher convergence rates of the FM-
OLS estimator for β2 making those estimates more reliable for our resampling algorithm.
This feature of the CPRs also affects the power properties of the bootstrapped Wald tests
depicted in Figure 2. The power properties of bootstrap and asymptotic approximation seem
to converge for T = 200.1 However, since the sample sizes in EKC studies are often very

1The detailed results are not reported in this paper, but can be obtained from the author upon request.
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small, we suggest that particularly bootstrapping the t-test for hypotheses involving β2 is an
interesting option for practitioners. The size distortions are minimal at all levels of regressor
endogeneity and, hence, size-adjustments are not necessarily needed to avoid Type-I errors.
Moreover, its power is competitive in finite samples.

4 Empirical application

In the following, we replicate the empirical analysis of the EKC hypothesis in Wagner (2015).
We consider the same 19 early industrialized countries over the period 1870–2000 and esti-
mate the quadratic CPRs for each country using the FM-OLS estimator. Per capita carbon
dioxide (CO2) and sulphur dioxide (SO2) emissions are chosen as the relevant measures of
pollution and real per capita GDP is the measure for economic activity. All variables are
log-transformed.

The coefficient estimates for the quadratic CPR are reported in Table 3 and the results
only differ marginally from those reported in Table 4 and Table 14 in the supplementary
material to the original article. However, comparing the p-values for the null hypothesis
β2 = 0, we find substantial differences. Using the t-test and the asymptotic approximation,
the null hypothesis is rejected at the 1% significance level for 12 of 19 countries in case of
CO2 and 17 of 19 countries in case of SO2 which, combined with the fact that the coefficient
estimates have a negative sign, provides overwhelming evidence that the EKC hypothesis
fits the data well. Bootstrapping those test statistics instead, only yields a rejection of the
null hypothesis for 3 of 19 countries and 4 of 19 countries, respectively. Consequently, these
results paint a much different picture and suggest that a linear curve also provides an accurate
description of relationship between pollution and economic activity.

5 Conclusion

This paper demonstrates that using the sieve bootstrap algorithm can improve the finite sam-
ple size properties and the size-adjusted power of hypothesis tests in cointegrated polynomial
regressions. While size distortions are reduced for the coefficients of the linear and quadratic
terms, we only maintain the same size-adjusted power for tests involving the quadratic co-
efficient. We recommend that practitioners use these bootstrap tests to avoid the need for
size-adjustments that depend on the (unknown) regressor endogeneity.

Acknowledgements
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Table 1: Empirical Null Rejection Probabilities (5% Significance Level) for single coefficient
hypotheses

Panel A: t-tests for H0 : β1 = 5
T = 100

Bartlett Kernel QS Kernel

Asymp. Bootstrap Asymp. Bootstrap

ρ1, ρ2 OLS AND NW AND NW AND NW AND NW

0.0 .0476 .1053 .0923 .0355 .0333 .1210 .1096 .0390 .0408
0.3 .1241 .1184 .1215 .0319 .0318 .1164 .1179 .0319 .0348
0.6 .2770 .1466 .1603 .0300 .0323 .1378 .1473 .0261 .0322
0.8 .5193 .2743 .2926 .0287 .0249 .2625 .2822 .0241 .0257

T = 200

Bartlett Kernel QS Kernel

Asymp. Bootstrap Asymp. Bootstrap

ρ1, ρ2 OLS AND NW AND NW AND NW AND NW

0.0 .0493 .0833 .0747 .0345 .0265 .0878 .0885 .0355 .0321
0.3 .1286 .0900 .0962 .0302 .0247 .0839 .0890 .0298 .0258
0.6 .3073 .1220 .1309 .0291 .0270 .1142 .1207 .0304 .0247
0.8 .5643 .2706 .2840 .0345 .0283 .2584 .2744 .0378 .0286

Panel B: t-tests for H0 : β2 = −0.3
T = 100

Bartlett Kernel QS Kernel

Asymp. Bootstrap Asymp. Bootstrap

ρ1, ρ2 OLS AND NW AND NW AND NW AND NW

0.0 .0509 .1009 .0885 .0454 .0413 .1158 .1060 .0453 .0464
0.3 .1234 .1065 .1100 .0421 .0438 .1052 .1071 .0406 .0453
0.6 .2364 .1319 .1431 .0443 .0475 .1244 .1326 .0419 .0469
0.8 .3761 .1871 .1986 .0527 .0517 .1787 .1878 .0512 .0534

T = 200

Bartlett Kernel QS Kernel

Asymp. Bootstrap Asymp. Bootstrap

ρ1, ρ2 OLS AND NW AND NW AND NW AND NW

0.0 .0516 .0838 .0736 .0406 .0354 .0884 .0867 .0413 .0366
0.3 .1315 .0851 .0917 .0378 .0343 .0792 .0855 .0381 .0354
0.6 .2619 .1137 .1221 .0360 .0318 .1083 .1123 .0349 .0332
0.8 .4222 .1855 .1957 .0479 .0408 .1799 .1882 .0511 .0412

Note: We draw R = 10, 000 replications from the DGP described in Equation (11) and apply the “Warp-speed”
bootstrap algorithm described in Giacomini et al. (2013) to obtain bootstrap distributions. AND and NW denote the
the data-dependent rule of Andrews (1991) and the sample size dependent rule of Newey and West (1994), respectively.
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Table 2: Empirical Null Rejection Probabilities (5% Significance Level) for linearly indepen-
dent restrictions

Wald tests for H0 : β1 = 5, β2 = −0.3
T = 100

Bartlett Kernel QS Kernel

Asymp. Bootstrap Asymp. Bootstrap

ρ1, ρ2 OLS AND NW AND NW AND NW AND NW

0.0 .0509 .1280 .1075 .0388 .0380 .1503 .1327 .0395 .0450
0.3 .1672 .1482 .1546 .0308 .0345 .1461 .1482 .0301 .0385
0.6 .4042 .1987 .2180 .0434 .0492 .1864 .1976 .0420 .0469
0.8 .7446 .4204 .4456 .0734 .0789 .3983 .4275 .0643 .0803

T = 200

Bartlett Kernel QS Kernel

Asymp. Bootstrap Asymp. Bootstrap

ρ1, ρ2 OLS AND NW AND NW AND NW AND NW

0.0 .0545 .0990 .0885 .0416 .0349 .1070 .1055 .0424 .0348
0.3 .1753 .1089 .1183 .0336 .0302 .0993 .1079 .0335 .0304
0.6 .4365 .1600 .1731 .0202 .0169 .1441 .1558 .0294 .0173
0.8 .7778 .4073 .4332 .0200 .0105 .3850 .4216 .0239 .0108

Note: We draw R = 10, 000 replications from the DGP described in Equation (11) and apply the “Warp-speed”
bootstrap algorithm described in Giacomini et al. (2013) to obtain bootstrap distributions. AND and NW denote the
the data-dependent rule of Andrews (1991) and the sample size dependent rule of Newey and West (1994), respectively.
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Table 3: FM-OLS estimation results of the CPR

Panel A: carbon dioxide emissions

δ β1 β2 p(β2)asymp p(β2)boot
Australia 0.035 4.534 -0.292 0.326 0.760
Austria -0.015 8.377 -0.406 0.022 0.457
Belgium -0.007 13.705 -0.727 0.000 0.009
Canada 0.002 15.703 -0.845 0.000 0.043
Denmark -0.006 11.357 -0.565 0.000 0.024
Finland -0.036 17.452 -0.832 0.000 0.049
France -0.002 10.138 -0.542 0.000 0.002
Germany -0.002 10.088 -0.548 0.000 0.040
Italy -0.004 6.333 -0.275 0.086 0.555
Japan 0.014 13.603 -0.759 0.001 0.324
The Netherlands 0.002 10.217 -0.531 0.000 0.029
New Zealand -0.002 1.919 -0.054 0.000 0.000
Norway 0.046 -6.894 0.339 0.027 0.558
Portugal 0.016 -2.921 0.210 0.254 0.675
Spain 0.010 5.931 -0.302 0.060 0.507
Sweden -0.006 12.480 -0.645 0.000 0.242
Switzerland -0.014 7.078 -0.303 0.054 0.566
UK -0.005 7.747 -0.409 0.000 0.047
USA -0.000 11.528 -0.600 0.000 0.029

Panel B: sulphur dioxide emissions

δ β1 β2 p(β2)asymp p(β2)boot
Australia 0.019 -3.318 0.162 0.610 0.858
Austria -0.024 26.364 -1.462 0.000 0.022
Belgium -0.009 33.646 -1.850 0.000 0.010
Canada 0.009 23.532 -1.345 0.000 0.000
Denmark -0.062 31.329 -1.552 0.000 0.035
Finland 0.003 27.739 -1.544 0.000 0.030
France -0.001 19.854 -1.098 0.000 0.032
Germany -0.006 19.570 -1.100 0.000 0.061
Italy -0.030 13.509 -0.647 0.002 0.306
Japan -0.003 18.028 -1.047 0.000 0.049
The Netherlands -0.004 33.098 -1.839 0.000 0.009
New Zealand 0.010 23.484 -1.364 0.000 0.111
Norway -0.012 22.938 -1.271 0.000 0.038
Portugal 0.009 1.643 -0.051 0.678 0.895
Spain 0.003 11.890 -0.664 0.000 0.225
Sweden -0.040 39.246 -2.111 0.000 0.000
Switzerland -0.077 31.084 -1.506 0.000 0.021
UK -0.010 28.229 -1.545 0.000 0.029
USA -0.013 17.806 -0.944 0.000 0.006

Note: The sample period is 1870–2000 with the exception of New Zealand where the sample starts in 1878. The long-run
variance estimation is performed using the Bartlett kernel with the bandwidth chosen according to Newey and West
(1994). p(β2)asymp and p(β2)boot denote the p-value for the hypothesis β2 = 0, using the asymptotic approximation
and the sieve bootstrap, respectively. 1,000 replications are used to compute the bootstrap sample of t-statistics.
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Figure 1: These figures depict the size-corrected power curves of the t-test based on the OLS estimator
(black), FM-OLS estimator with data-dependent bandwidth selection (blue) and sample size dependent
bandwidth selection (red). The corresponding values for the bootstrap test are marked with a diamond.
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Figure 2: Size-corrected power curves for the Wald test of β1 = 5, β2 = −0.3 (ρ1, ρ2 =
0.6)
This figure depicts the size-corrected power curves of the Wald test based on the OLS estimator (black), FM-
OLS estimator with data-dependent bandwidth selection (blue) and sample size dependent bandwidth selection
(red). The corresponding bootstrap tests are marked with a diamond.
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