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1 Second step estimator - Adaptive group LASSO

As outlined in the main text, to obtain a consistent estimator for the number of breaks,
their timing and coefficient changes, we need to design a second step refinement reducing the
number of superfluous breaks. In the following, we outline the use of an adaptive group LASSO
estimator with group LASSO estimates as weights as a second step. To prove consistency of
the adaptive group LASSO estimator, slightly different assumptions about the minimum break
intervals are needed:

Assumption 3-b. (i) Imin = min
1≤j≤m0+1

|t0j − t0j−1| > ζT for some ζ > 0, where Imin denotes
the minimum break interval.
(ii) The break magnitudes are bounded to satisfy mθ = min

1≤j≤m0+1
‖θ0

t0j−1
‖ ≥ ν > 0 and

Mθ = max
1≤j≤m0+1

‖θ0
t0j−1
‖ ≤ V <∞.

Note that part (i) of Assumption 3-b requires the minimum break interval to grow at rate
T which is a slightly stronger assumption than part (i) of Assumption 3 in the main text.
Consequently, Theorem 2 can be proven under these conditions as well.

According to Theorem 2, the group LASSO estimator slightly overselects breaks under the
right tuning. The algorithm employed to estimate θ̂(T ) allows to pre-specify the maximum
number of breakpoint candidates M , i.e. the maximum number of non-zero groups in θ̂(T ),
and the minimum distance between breaks. In line with Assumption 3-b, the minimum
distance needs to be specified such that Imin = O(T ). Since the group LASSO overselects
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breaks in the first step, M should be set large enough to encompass all true breakpoints and
some additional falsely selected non-zero groups. This condition guarantees that θ̂(T ) always
contains Md elements. In turn, Td−Md columns of Z corresponding to zero coefficients are
eliminated during the first step to result in the Tq ×Md design matrix ZS . Hence, for given
M � T , the column size of the new design matrix is substantially smaller than the original
size Td and does not longer depend on the sample size. This allows us to further assume that
all eigenvalues of ΣS = Z ′SZS/T are contained in the interval [c∗, c∗], where c∗ and c∗ are two
positive constants. This means that we can relate to a restricted eigenvalue condition similar
to Bickel et al. (2009) for the second step estimation. While the restricted eigenvalue condition
in general does not hold for change-point settings, the dimension reduction of the first step
allows us to state this assumption for our reduced design matrix. It should be noted that
this assumption for the second step estimation is further justified by the minimum subsample
size needed to precisely estimate coefficient changes. Consequently, M should be chosen so
that the average regime length in case of equidistantly-spaced breaks still guarantees enough
observations per regime to estimate all coefficient changes. In principle, we can re-estimate
the model with post-LASSO OLS (the algorithm ensures that there is no local collinearity)
before the adaptive group LASSO estimator is applied to benefit from the higher convergence
rate of the OLS estimator after T −M break candidates are eliminated. This comes at very
little computational costs after finding the preliminary model specification withM breakpoint
candidates. The important assumptions for consistency of the adaptive group LASSO are
that consistent weights are available and the design matrix fulfills the restricted eigenvalue
condition.

We follow Wang and Leng (2008), Behrendt and Schweikert (2021), and Schweikert (2022)
and define the adaptive group LASSO objective function

Q(θS) = 1
T
‖Y −ZSθS‖2 + λS

M∑
i=1

wi‖θS,i‖, (S.1)

where γ > 0 and wi are the group-specific weights assigned as follows

wi =

 ‖θ̂
P
S,i‖−γ if θ̂S,i 6= 0

∞ if θ̂S,i = 0,

and set 0×∞ = 0. θ̂PS,i, i = 1, . . . , |AT |+ 1 denotes the post-LASSO OLS estimates for the
non-zero groups obtained from optimizing the group LASSO objective function in the first
step. The remaining M −|AT |−1 group elements of θ̂S can be filled with zero groups as long
as their selected indices lead to ΣS being a positive definite matrix for all T .

We denote the estimator minimizing Q(θS) with ˆ̂
θS = arg minθS Q. Eliminating columns
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from the initial design matrix requires a mapping of our second step indices to recover the
original indices. For notational convenience, we use the mapping g : N → N, i 7→ g(i) = ti,
where ti is the breakpoint corresponding to the index i, for this purpose and define the index
set Ā∗ (A∗) to pick out the elements that correspond to truly non-zero coefficients (coefficient
changes).

The next asymptotic result shows that the adaptive group LASSO estimator provides
consistent parameter estimation and model selection

Theorem 5. If Assumptions 1 - 3-b hold, λS → 0, λ2
ST

γ →∞ for γ > 0, then
(a) ‖ˆ̂θS − θ0

S‖ = Op(T−
1
2 )

(b) P (g({j ≥ 2 : ‖ˆ̂θS,j‖ 6= 0}) = A)→ 1.

Remark 1. Part (a) of Theorem 5 gives a uniform convergence rate for all coefficients of
the model which is, of course, accomplished by the scaling factors applied to the integrated
regressors and the linear trend to ensure that all regressors have the same order of integration.
Post-LASSO OLS without scaling factors can be used to benefit from higher convergence rates
of each component. Essentially, part (a) is a necessary byproduct of the more important result
about model selection consistency in part (b).

Turning to the finite sample case, we need a strategy to select the tuning parameter λT .
If we apply the block coordinate decent algorithm to solve the second step adaptive group
LASSO estimation, we need to evaluate a set of tuning parameters to find the optimal value
with respect to a pre-specified criterion. We consider two data-dependent selection rules often
applied in the literature, namely conventional information criteria like the BIC or MDL-based
criteria. Our asymptotic results show that it is crucial to let the tuning parameter grow at
the right rate. However, this rate provides only limited practical guidance towards the choice
of the tuning parameter. First, we follow Kock (2016), Qian and Su (2016) and Schweikert
(2022) and select λT by minimizing an information criterion in the form of

IC∗(λT ) = log(|Σ̂|) + ρT D̂, (S.2)

where Σ̂ denotes the estimated covariance matrix of the residuals ût resulting from the adap-
tive group LASSO estimation of Equation (S.1) and D̂ denotes the number of estimated
coefficients. The penalty function ρT allows for different choices. While Kock (2016) sug-
gests to use the BIC for potentially nonstationary autoregressive models which corresponds
to ρT = log(T )/T , Qian and Su (2016) propose to use ρT = 1/

√
T for the estimation of

structural breaks in stationary time series regressions. Here, we follow Kock (2016) and apply
the BIC.

Second, we select λT by minimizing the minimum description length (Hansen and Yu,
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2001; Davis et al., 2006):

MDL∗(λT ) = log2(m)+m log2(T )+
m∑
j=1

d+ q(q + 1)/2
2 log2(Tj)+

T

2 log(|Σ̂|)−1
2

T∑
j=1

tr(Σ̂−1ûtû
′
t).

(S.3)
The principle of MDL is to find the best fitting model from set of candidate models as the one
that produces the shortest code length. Here, we need approximately log2(m) bits to store
the information about the number of breaks, at most m log2(T ) bits to store the location of
the breaks, and at most

∑m
j=1

qd+q(q+1)/2
2 log2(Tj) to store the total number of parameters

(coefficients and the residual covariance matrix). The remaining terms relate to the negative
loglikelihood of the fitted model and represent the code length of the residuals ût (Rissanen,
1989; Park, 1993).

2 Simulation results

Table 1: Estimation of (multiple) structural breaks in the full model with adaptive group
LASSO (BIC)

SB1: (τ = 0.5)
T pce τ

100 98.0 0.503 (0.015)
200 99.3 0.500 (0.004)
400 100 0.500 (0.003)
800 99.9 0.500 (0.001)

SB2: (τ1 = 0.33, τ2 = 0.67)
T pce τ1 τ2

150 97.7 0.326 (0.002) 0.667 (0.001)
300 98.1 0.330 (0.001) 0.670 (0.000)
600 98.5 0.330 (0.001) 0.670 (0.000)
1200 98.5 0.330 (0.001) 0.670 (0.001)

SB4: (τ1 = 0.2, τ2 = 0.4, τ3 = 0.6, τ4 = 0.8)
T pce τ1 τ2 τ3 τ4

250 57.8 0.205 (0.022) 0.400 (0.008) 0.600 (0.004) 0.800 (0.002)
500 74.4 0.201 (0.006) 0.400 (0.002) 0.600 (0.002) 0.800 (0.001)
1000 87.5 0.200 (0.002) 0.400 (0.001) 0.600 (0.001) 0.800 (0.001)
2000 89.3 0.200 (0.001) 0.400 (0.001) 0.600 (0.001) 0.800 (0.000)

Note: We use 1,000 replications of the data-generating process given in Equation (10) in the main text. The variance
of the error terms is σ2

ξ = 1 and σ2
u = 2, respectively. The first panel reports the results for one active breakpoint at

τ = 0.5, the second panel considers two active breakpoints at τ1 = 0.33 and τ2 = 0.67 and the third panel has four active
breakpoints at τ1 = 0.2, τ2 = 0.4, τ3 = 0.6, and τ4 = 0.8. Standard deviations are given in parentheses.
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3 Proofs

Lemma 5. We define the Tq × d matrix ZS,i selecting all columns from ZS belonging to
breakpoint candidate i. Then, a necessary and sufficient condition for the estimator ˆ̂

θS to be
a solution to the adaptive group LASSO objective function Q(θ) is

Z ′S,i

(
Y −ZS

ˆ̂
θS

)
− 1

2TλS‖θ̂S,i‖
−γ

ˆ̂
θS,i

‖ˆ̂θS,i‖
= 0, ∀ˆ̂θS,i 6= 0,

and
‖Z ′S,i

(
Y −ZS

ˆ̂
θS

)
‖ ≤ 1

2TλS‖θ̂S,i‖
−γ , ∀ˆ̂θS,i = 0,

where ‖θ̂S,i‖−γ are the group-specific weights.

Proof of Lemma 5. This lemma is a direct consequence of the Karush-Kuhn-Tucker (KKT)
conditions for adaptive group LASSO estimators.

�

Proof of Theorem 5. The adaptive group LASSO objective function Q(θS) is a strictly
convex function. We show that there is a local minimizer that is consistent and by global
convexity of Q(θS), it follows that such a local minimizer must be ˆ̂

θS . Similar as in Fan and
Li (2001), the existence of an above-described local minimizer is implied by the fact that for
any ε > 0, there is a sufficiently large constant C > 0, such that

lim inf
T

P

(
inf

v:=(v1,...,vM )∈RMd:‖v‖=C
Q(θ0

S + T−
1
2v) > Q(θ0

S)
)
> 1− ε. (S.4)
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It holds that

Q(θ0
S + T−

1
2v)−Q(θ0

S)

= 1
T
‖Y −ZS(θ0

S + T−
1
2v)‖2 + λS

M∑
i=1

wi‖(θ0
S,i + T−

1
2vi)‖

− 1
T
‖Y −ZSθ

0
S‖2 − λS

M∑
i=1

wi‖θ0
S,i‖

= 1
T
v′
( 1
T
Z ′SZS

)
v − 2

T
3
2
v′Z ′SU (S.5)

+λS
M∑
i=1

wi‖(θ0
S,i + T−

1
2vi)‖ − λS

M∑
i=1

wi‖θ0
S,i‖

≥ 1
T
v′
( 1
T
Z ′SZS

)
v − 2

T
3
2
v′Z ′SU

+λS
∑

g(i)∈AT∩A
‖θ̂PS,i‖−γ

(
‖(θ0

S,i + T−
1
2vi)‖ − ‖θ0

S,i‖
)

≥ 1
T
v′
( 1
T
Z ′SZS

)
v − 2

T
3
2
v′Z ′SU −

1
T
λS

∑
g(i)∈AT∩A

‖θ̂PS,i‖−γ‖vi‖

= I1 − I2 − I3.

Since the restricted eigenvalue condition holds for ΣS = Z ′SZS/T , i.e., its eigenvalues are
positive for all T , and ΣS thus converges to a positive definite random matrix, we have
I1 = Op(T−1)‖v‖2. Further, it follows from Cauchy-Schwarz inequality and arguments similar
to those used in Lemma 2 that

E|I2|2 = 4
T 3E

(
v′Z ′SU

)2
≤ 4

T 3 ‖v‖
2E‖Z ′SU‖2 (S.6)

= 1
T 2 ‖v‖

2Op(1),

and consequently I2 = Op(T−1)‖v‖. Finally, using the Cauchy-Schwarz inequality, we have

I3 ≤ 1
T
λS

 ∑
g(i)∈AT∩A

‖θ̂S,i‖−2γ

1/2

‖v‖ (S.7)

≤ 1
T
λSm

1/2
0 min

g(i)∈AT∩A
‖θ̂PS,i‖−γ‖v‖.

We note that ming(i)∈AT∩A ‖θ̂
P
S,i‖−γ = Op(1) since θ̂PS,i is a consistent post-LASSO OLS

estimator and the first step estimation does not ignore relevant breakpoints asymptotically
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according to Theorem 2. Using the condition λS → 0, we know that I3 is bounded by
Op(T−1)‖v‖. Hence, we can specify a large enough constant C such that I1 dominates I2 and
I3. This completes the proof of part (a).

Next, we turn to the proof of part (b). Lemma 5 gives the necessary and sufficient condition
for an estimator to be a solution to the adaptive group LASSO objective function as defined
by Equation (S.1). Now, to prove that all truly zero coefficients are set to zero almost surely,
it suffices to show that

P

(
∀g(i) ∈ AT ∩ Ac, ‖

1
T
Z ′S,i(Y −ZS,A∗

ˆ̂
θS,A∗)‖ ≤ 1

2λS‖θ̂
P
S,i‖−γ

)
→ 1, (S.8)

or equivalently

P

(
∃g(i) ∈ AT ∩ Ac, ‖

1
T
Z ′S,i(Y −ZS,A∗

ˆ̂
θS,A∗)‖ > 1

2λS‖θ̂
P
S,i‖−γ

)
→ 0. (S.9)

It holds that

P

(
∃g(i) ∈ AT ∩ Ac, ‖

1
T
Z ′S,i(Y −ZS,A∗

ˆ̂
θS,A∗)‖ > 1

2λS‖θ̂
P
S,i‖−γ

)
(S.10)

≤ P

(
∃g(i) ∈ AT ∩ Ac, ‖

1
T
Z ′S,iU‖ >

1
2λS‖θ̂

P
S,i‖−γ − ‖

1
T
Z ′S,iZS,A∗

(
ˆ̂
θS,A∗ − θ0

S,A∗

)
‖
)
.

Further, we have

‖ 1
T
Z ′S,iZS,A∗

(
ˆ̂
θS,A∗ − θ0

S,A∗

)
‖

≤ 1√
T

[(
ˆ̂
θS,A∗ − θ0

S,A∗

)′
Z ′S,A∗

( 1
T
ZS,iZ

′
S,i

)
ZS,A∗

(
ˆ̂
θS,A∗ − θ0

S,A∗

)]1/2
(S.11)

≤ c∗‖ˆ̂θS,A∗ − θ0
S,A∗‖,

and the first part of Theorem 5 implies that ‖ˆ̂θS,A∗ − θ0
S,A∗‖ = Op(T−

1
2 ). Hence, we need to

show that

P

(
∃g(i) ∈ AT ∩ Ac, ‖

1
T
Z ′S,iU‖ >

1
2λS‖θ̂

P
S,i‖−γ − c∗‖

ˆ̂
θS,A∗ − θ0

S,A∗‖
)
→ 0. (S.12)

Using post-LASSO OLS estimates as our weights implies max
g(i)∈Ac

‖θ̂PS,i‖ = Op(T−1/2) and we
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have

P

(
∃g(i) ∈ AT ∩ Ac, ‖

1
T
Z ′S,iU‖ >

1
2λS‖θ̂

P
S,i‖−γ − c∗‖

ˆ̂
θS,A∗ − θ0

S,A∗‖
)

≤ P

∃g(i) ∈ AT ∩ Ac, ‖
1
T
Z ′S,iU‖ >

λS

2
(

max
i∈Ac
‖θ̂PS,i‖

)γ − c∗‖ˆ̂θS,A∗ − θ0
S,A∗‖


≤ P

(
∃g(i) ∈ AT ∩ Ac, ‖

1
T
Z ′S,iU‖ >

λS
2

(
C√
T

)−γ
− Cc∗ 1√

T

)
+ op(1)

≤ P

(
∃g(i) ∈ AT ∩ Ac, ‖

1
T
Z ′S,iU‖ >

λS
4

(
C√
T

)−γ)
+ op(1) (S.13)

≤
∑

g(i)∈AT∩Ac
P

(
‖ 1
T
Z ′S,iU‖ >

λS
4

(
C√
T

)−γ)

≤
∑

g(i)∈AT∩Ac

E‖ 1
TZ
′
S,iU‖2

1
16λ

2
S

(
C√
T

)−2γ ,

for some C > 0. The third inequality follows from the condition λ2
ST

γ →∞. Since Assump-
tion 1 implies that E‖ 1

TZ
′
S,iU‖2 = Op(T−1), we have

16E‖ 1
TZ
′
S,iU‖2

C−2γλ2
ST

γ
→ 0, (S.14)

for all g(i) ∈ AT ∩ Ac. Note that |AT | < M for all T and that all remaining indices i not
included in AT correspond to coefficients which have already been set to zero in the first step.

For the proof of model selection consistency, we still need to show that no truly non-zero
coefficient changes are set to zero. It holds that

min
g(i)∈A

‖ˆ̂θS,i‖ ≥ min
g(i)∈A

‖θ0
S,i‖ − max

g(i)∈A
‖ˆ̂θS,i − θ0

S,i‖. (S.15)

Since ‖ˆ̂θS,i − θ0
S,i‖

p→ 0 by part (a) and by considering Assumption 3-b, we have

P

(
min
g(i)∈A

‖ˆ̂θS,i‖ ≥ ν
)
→ 1. (S.16)

This completes the proof of Theorem 5.

�
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