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1 Introduction

The relationship between upstream and downstream fuel prices is one of the most com-

monly studied topics in asymmetric pricing. Starting with Bacon (1991) and Manning

(1991), a steadily growing literature has emerged (see, among others (Kaufmann and

Laskowski, 2005; Grasso and Manera, 2007; Al-Gudhea et al., 2007; Meyler, 2009; Dou-

glas, 2010; Douglas and Herrera, 2010; Fosten, 2012)), trying to determine whether

price decreases in upstream markets are adjusted in downstream markets differently to

price increases. Previous empirical studies find mixed evidence for price asymmetries

depending on the methodology used, on the country or regional market under inves-

tigation and on the stage of the supply chain. Perdiguero-García (2013) conducts a

meta-analysis of empirical studies on price asymmetries in the oil market from 1991

until 2011. He finds that the research design contributes substantially to finding asym-

metries. Also, the level of competition seems to be a key factor for the existence of

asymmetries in the market.

Several concepts of asymmetry in price transmissions are found in the literature

(see Meyer and Cramon-Taubadel (2004) for a comprehensive survey on asymmetric

pricing and Frey and Manera (2007) for an overview of econometric approaches). The

specific type of asymmetry we focus on in this paper is long-run asymmetry, where we

investigate the reaction times of a cointegrated system after equilibrium errors. Because

the cost function for retail fuel is primarily determined by the price of crude oil, we

expect fuel markets to be strongly vertically linked. Hence, upstream and downstream

prices are expected to maintain a long-run equilibrium which implies that either the

upstream or the downstream prices have to adjust in response to equilibrium errors.

In this context, asymmetric pricing refers to a situation in which the rate of price

adjustment differs, depending on the size or the sign of the deviation from equilibrium.
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Long-run asymmetry has a negative effect on consumer welfare if positive equilibrium

errors (downstream prices are too high relative to the long-run equilibrium) are not

adjusted as quickly as negative equilibrium errors (upstream prices are too high relative

to the long-run equilibrium).

Most studies on asymmetric pricing are conducted under a similar framework: A

long-run relationship between upstream and downstream prices is estimated by least

squares as the first step of the Engle-Granger two-step cointegration procedure. The

resulting residual process is separated into two or more regimes and the speed of ad-

justment in each regime is measured. Significantly different adjustment rates over at

least two regimes may be considered as evidence for long-term asymmetry in the coin-

tegrating relationship. The methodological aspects of testing for cointegration with

threshold effects have been developed by Enders and Siklos (2001). Although the latter

framework is appealing due to its straightforward implementation, it yields contradic-

tory results in a number of studies.1 These ambiguities may be related to difficulties

for the researcher in correctly determining the boundaries of the regimes. Chan (1993)

shows that searching over the set of possible threshold values so as to minimize the sum

of squared residuals yields a consistent estimate of the threshold parameter. However,

it is possible that multiple local extrema can be found and the global extremum might

not necessarily be the only reasonable parameter choice from an economic perspective.

Additionally, it is not quite clear how many regimes should be used to quantify the

degree of asymmetric pricing. Taking into account the existence of transaction costs,

it might be reasonable to model the price adjustment process with three regimes -

one regime for small equilibrium errors with weak or insignificant adjustment and one

regime for large positive and negative equilibrium errors, respectively. However, the

standard literature on threshold cointegration (Enders and Siklos, 2001; Hansen and

1Compare for example the results in (Al-Gudhea et al., 2007; Douglas, 2010).
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Seo, 2002) tends to restrict the analysis to only two regimes. Therefore, a certain degree

of subjective judgement is involved in all threshold cointegration models.

Typically, the comparison of adjustment rates between regimes is based on a com-

parison of conditional-means. Because the analysis is restricted to the mean behaviour

of the residual process in each regime, specifying the threshold parameter correctly ex-

erts a substantial influence on the outcomes. Consider, for instance, a residual process

that exhibits gradually increasing mean-reversion starting with low mean-reversion for

negative deviations up to high mean-reversion for positive deviations, i.e. the adjust-

ment rates do not follow a piecewise linear step-function but rather a monotonically

increasing continuous function. In this case, the threshold cointegration approach is not

able to produce robust results since the aforementioned adjustment process requires a

large number of regimes and hence a correspondingly large number of thresholds to be

estimated.2 Alternatively, the class of smooth transition autoregressive (STAR) mod-

els may be used for modelling nonlinear regime-dependent processes (see (Terasvirta,

1994; van Dijk et al., 2002) for an overview). In particular, a logistic transition func-

tion could provide an adequate fit for the above described process. However, the recent

literature points to severe identification problems associated with STAR models (Ekner

and Nejstgaard (2013)).

In line with the majority of papers on the subject, we use Engle-Granger cointe-

gration as a starting point and focus on the mean-reversion of the residual process.

But instead of piecewise linear models, we propose a quantile autoregression model.

This model expresses the τ -th conditional-quantile function of the response as a linear

function of the lagged values of the response. Using quantile autoregression, we are

able to analyze different parts of the response distribution and thereby use informa-

tion that would not be accessible in a conditional-mean paradigm. This is also done
2Honarvar (2010) shows in a series of simulation experiments how an incorrect threshold biases

the estimated coefficients.
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without separating the process into sub-processes in a subjective manner. Since the

equilibrium error series - obtained as least squares residuals from the cointegrating re-

gression - are centered around zero by construction, a natural interpretation for the

conditional-quantiles applies: Lower quantiles correspond to large negative deviations

from the long-run equilibrium and upper quantiles to large positive deviations. A com-

parison of quantile-dependent autoregressive coefficients enables us to assess the degree

of asymmetry more thoroughly.

We apply this new approach to price relationships in the US and German fuel

markets. So far it has not been possible to draw any conclusive statement about

whether or not prices are adjusted asymmetrically in these fuel markets. We consider

the two major fuel types, gasoline (regular grade for the US market and Euro Super95

for Germany) and diesel, and follow the supply chain disaggregation by Grasso and

Manera (2007) to track the price transmission at the different stages of the production

chain from crude oil to retail prices. The German fuel market has a distinctly different

market structure as compared to the US market hence we seek to provide new insights

as to how the potential asymmetries are formed.

This article provides two main contributions. First, we develop a new methodology

that is able to model asymmetric price adjustments in a more flexible way. Second,

we apply this new methodology to the US and German fuel markets and study the

price transmission channel between different stages of the supply chain. Comparing the

results for two major fuel markets allows us to draw conclusions on how the different

market structures may be related to the potentially different degrees of asymmetric

price transmission.

The remainder of the paper is organized as follows. Section 2 summarizes the unique

characteristics of the US and German fuel markets. Section 3 outlines the quantile

regression methodology by Koenker and Xiao (2006) and discusses its applicability in a
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cointegration model for asymmetric pricing. In Section 4, we apply these techniques to

assess the degree of asymmetric price transmission in the US and German fuel markets

and Section 5 offers a conclusion.

2 A brief description of the US and German fuel markets

Gasoline and diesel play a primary role in transportation and the economy in general. As

liquid fuels, they are derived from crude oil in a refinery process, are stored in fuel depots

and are finally distributed to local filling stations. To reveal the potentially asymmetric

price transmission in the fuel markets, we follow Grasso and Manera (2007) and analyze

individual steps of the transmission chain. At the first stage of the production chain,

the price transmission occurs from crude oil to ex-refinery prices. We refer to this as

the first stage or refining stage price transmission. The second stage price transmission

then occurs when wholesale price changes affect the cost structure for retailers. We refer

to this as the second stage or distribution stage price transmission. The refined fuel is

transported to the filling stations and priced depending on the fuel grade. Additionally,

we consider a single stage transmission, directly from crude oil prices to retail prices.

Concerning the retail price, one has to distinguish between prices that exclude (PTD)

and prices that include tax and duty (ITD). Hence, the taxation structure might have

an influence on whether price transmissions are asymmetric.

In this study, we examine two fuel markets which are geographically separated and

feature distinct market structures. The US fuel market is characterized by a large

dependence on gasoline, with 137.8 billion gallons of gasoline consumption in 2010

whereas diesel consumption amounted to only 49.2 billion gallons (US Energy Infor-

mation Agency (2015)). The share of diesel-engined retail car sales is generally low
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in the US.3 The preference for gasoline can in parts be explained by a higher federal

excise tax burden on diesel fuel (24.4 cents per gallon) in comparison to gasoline (18.4

cents per gallon). State and local state taxes and fees amount to a national average

total of 49.44 cents per gallon for gasoline and 55.41 cents per gallon for diesel (Ameri-

can Petroleum Institute (2017)). Diesel is almost exclusively consumed by professional

users (e.g. truck companies, heavy-duty machinery). Approximately 85% of gasoline

sold is of regular grade, therefore we do not consider midgrade and premium gasoline.

US refineries mostly use North American crude oil that is considered light and sweet

making it a high quality crude. The price for North American crude oil (WTI) is formed

in a trading hub in Cushing, Oklahoma. An ex-refinery price can be stated for the West

coast (Los Angeles), East Coast (New York Habor) and the Gulf Coast region. The

retail price is then derived from a sample of filling stations throughout the country.

Northern and Central European countries utilize primarily crude oils for which the

North Sea crude oil Brent serves as a benchmark. The crude oil production is deliv-

ered to the Antwerp-Rotterdam-Amsterdam (ARA) oil hub and transported to nearby

refineries. For the retail price of fuel we concentrate on Germany as a major auto-

motive market in Europe and analyze the country-specific fuel prices. A Europe-wide

analysis would only be feasible as a panel of individual country data (see Grasso and

Manera (2007) or Meyler (2009)) since the market structures and taxing schemes vary

greatly. European transportation relies much more on diesel-powered engines than the

US. Around half of all new passenger cars sold in 2013 were diesel-powered (Eurostat

(2017)). Including industrial use, the overall diesel consumption of 31.3 million tons in

2009 was higher than the gasoline consumption of 20.2 million tons (Statista (2010)).

The retail fuel tax in Germany is a compound of a fixed mineral oil tax (diesel 47.04

cents per litre, gasoline 65.45 cents per litre) and a value added tax (VAT) applied to
3The share of diesel cars sales rose to an all-time high with 2.94% in 2009 but then dropped back

down to 0.33% in 2012 (US Department of Energy (2013)).
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both the fuel itself and the mineral oil tax.4

3 A quantile-dependent error correction mechanism

The starting point for the empirical analysis of asymmetric price adjustments in this

paper is the residual-based cointegration framework developed by Engle and Granger

(1987). Two individually integrated time series, yt and xt, are said to be cointegrated

if they form a linear combination that is stationary. In our empirical application, yt

describes the downstream price and xt corresponds to the upstream price. In the first

step, the long-run equilibrium equation

yt = β0 + β1xt + zt (1)

is estimated by least squares to obtain the cointegrating vector. In the second step, a

stationarity test is applied on the least squared residual series zt to ascertain whether

the latter indeed constitutes a stationary equilibrium error.5 The ADF-type Engle-

Granger cointegration test assesses the significance of the reversion of the residual

process towards its mean.

The majority of studies on asymmetric price adjustment focusses on the mean-

reversion property of the cointegration residuals. In order to allow for asymmetric

adjustment, the residual process is divided into sub-processes at one or more threshold

values. Instead, we propose a quantile autoregression model that is able to measure

nonlinear effects in the adjustment process using repeated estimation of a linear model.

We assume an autoregressive process of order p and use the following linear function

4The mineral tax in Germany has changed five times during our sample. At the beginning of our
sample in 1999 the mineral tax for gasoline (diesel) was 50.11 (31.70) cents. It increased by 3.07 cents
in April 1999 and then in January of each following year to reach 65.45 (47.04) cents in 2003. The
VAT increased in 2007 from 16% to 19%.

5The disequilibirum series, although estimated, will be denoted zt for simplicity.
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(see Koenker and Xiao (2006)) for the residuals zt,

zt = µ0 + α1,tzt−1 + α2,tzt−2 + · · ·+ αp,tzt−p + ut (2)

with µ0 = E [θ0(Ut)], ut = θ0(Ut) − µ0 and αj,t = θj(Ut) for j = 1, . . . , p. The θj’s

are real-valued functions [0, 1] → R of standard uniform random variables Ut. The

functions are unknown and have to be estimated. ut is a sequence of independently

identical distributed random variables with distribution function F (·) = θ−1
0 (· + µ0).

The autoregressive coefficients αj,t depend on the quantile τ ∈ [0, 1] of the error term

via the function θj(Ut), allowing them to change from one period to the next.

The residual process zt is assumed to follow a globally covariance-stationary process

under the alternative that is allowed to exhibit some locally persistent or even explosive

behavior. However, significant mean-reversion is required in some quantiles to ensure

overall stability of the process. Estimation of (2) requires solving

min
αt ∈Rp+1

 ∑
t∈{t:zt≥Xtαt}

τ |zt −Xtαt|+
∑

t∈{t:zt<Xtαt}
(1− τ)|zt −Xtαt|

 (3)

with Xt = (1, zt−1, . . . , zt−p) and αt = (µ0, α1,t, . . . , αp,t)′ by using linear programming

techniques (see (Koenker and d’Orey, 1987; Portnoy and Koenker, 1997)).

The quantile autoregression can equivalently be written in the random-coefficient no-

tation which will be hereafter referred to as the QAR(p) model,

zt = µ0 + ρtzt−1 +
p∑
j=1

γj,t∆zt−j + εt (4)

where the additional p lags are included to accommodate the dynamics of the process.

The analysis continues to focus on the quantile-dependent autoregressive coefficient ρt
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or equivalently the mean-reversion 1 − ρt of the τth conditional-quantile of zt.6 Since

we are interested in a quantile-dependent error correction mechanism, we apply the

QAR(p) model to the least squared residuals resulting from the long-run equation in

(1). The coefficient ρt is estimated for a sequence of quantiles so that the mean-reversion

behaviour can be studied for disequilibria of different signs and magnitudes.

3.1 Testing for cointegration

We test for stationarity of the residual series zt by applying a modified version of

the quantile unit root test developed by Koenker and Xiao (2004). For that purpose,

equation (4) is estimated for a range of quantiles (in our case T = (0.01, 0.02, . . . , 0.99))

and the t-statistic for the null hypothesis of no cointegration, ρt(τ) = 1, is computed

by

tn(τ) =
̂f(F−1(τ))√
τ(1− τ)

(Z−1
′P∆Z−1)1/2(ρ̂t(τ)− 1) (5)

where Z−1 is the vector of the lagged variable zt−1 and P∆ is the projection matrix

onto the space orthogonal to ∆ = (1,∆zt−1, . . . ,∆zt−p)′. ̂f(F−1(τ)) can be written

as ̂f(F−1(τ)) = (τi − τi−1)/(Q̂zt(τi|Xt)− Q̂zt(τi−1|Xt)) where Q̂zt(τi|Xt) represents the

conditional-quantile of zt given the information set at point t. The difference quo-

tient, ̂f(F−1(τ)), estimates the conditional density of zt for some appropriately chosen

sequence of τ ’s. Since the residual process maintains stationarity in the long-run de-

spite the fact that it may display persistence for some quantiles, we use a test statistic

that focuses on the overall mean-reversion. For that matter, we employ a quantile

Kolmogorov-Smirnov test

QKS = sup |tn(τ)| (6)

6Note that the quantile autoregression should not be estimated in the usual mean-reversion notation
since the application of the nonparametric quantile function on the response ∆zt is not equivalent to
the application on the response zt. The former could be used to model momentum shifts in the
adjustment process.
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for the t-ratios in (5). Large values of QKS signal a strong overall mean-reversion be-

haviour of the residual process and should therefore lead to a rejection of the hypothesis

of no cointegration.

The limiting distributions of the individual t-statistics are nonstandard so that we

follow Koenker and Xiao (2004) and use a re-sampling procedure for inference based

on the QKS statistic. However, a bootstrap design has to account for the fact that

residuals from the cointegrating regression in (1) are used. The existing literature on

bootstrapping cointegrating regressions points to some difficulties related to nuisance

dependencies between the error term and the regressor(s) in the cointegrating regression

(see (Li and Maddala, 1997; Chang et al., 2006)). However, bootstrapping cointegrating

regressions is mostly used to test linear hypothesis on the cointegrating vector, whereas

in our study we seek to test whether the variables are cointegrated with a potentially

time-varying mean-reversion behaviour. The error term in (1) is not well defined under

the null of no cointegration so that a contemporaneous dependence structure between zt
and the xt variable(s) cannot exist. We therefore propose a modification of the bootstrap

unit root test in Koenker and Xiao (2004) in order to make it applicable in cointegration

testing. In step (4) of the bootstrap algorithm (see below) the cointegrating regression

is re-estimated to mimic the data more closely. The algorithm then proceeds as follows:

(1) Fit the pth order autoregression

∆zt =
p∑
j=1

ηj∆zt−j + ut (7)

by least squares and obtain the parameter estimates η̂j as well as the residuals ût.

(2) Draw iid variables u∗t from the centered residuals ût and generate ∆z∗t using the esti-

mates from the fitted autoregression so that

∆z∗t =
p∑
j=1

η̂j∆z∗t−j + u∗t . (8)
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(3) Generate z∗t under the null restriction of a unit root

z∗t = z∗t−1 + ∆z∗t (9)

with z∗1 = z1.

(4) Regard the exogenous cointegration variables as fixed and generate y∗t = β̂0 + β̂1xt+z∗t .

Estimate

y∗t = β∗0 + β∗1xt + z∗∗t (10)

by least squares and obtain the residuals z∗∗t .

(5) Estimate

z∗∗t = µ0 + ρtz
∗∗
t−1 +

p∑
j=1

γj,t∆z∗∗t−j + εt (11)

to obtain the bootstrap estimates and test statistics.

The bootstrap estimates for QKS allow to construct p-values for the empirically ob-

served statistic. If the QKS test confirms global stationarity of the residuals we assume

a long-run cointegrating relationship and proceed with the analysis of the degree of

asymmetry in the adjustment path, especially as to how the mean-reversion parameter

differs for different signs and sizes of the shock.

3.2 Testing for quantile effects

Inferential evidence for an asymmetric adjustment behavior is obtained by evaluating

the difference in the autoregressive coefficients across quantiles. Least squares residuals

are centered around zero by construction so that lower quantiles of zt refer to large

negative and upper quantiles of zt to large positive deviations. Thus we seek to test the

equality of two autoregressive coefficients at the left and right tail of the conditional

distribution, for example, according to the null hypothesis H0 : ρt(τ5) = ρt(τ95) or more
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generally, we compare a range of coefficients across quantiles with H0 : ρt(τ5) + · · · +

ρt(τl) = ρt(τu) + · · · + ρt(τ95). In both cases, we use a Wald statistic that imposes

the corresponding restrictions on the coefficients. The computation of the test statistic

requires estimation of the covariance matrix of the estimators.

Cointegration residuals, although covariance-stationary, potentially display a large

degree of dependence. Therefore, to account for potentially autocorrelated errors in

(4), we suggest a block bootstrapping procedure to estimate the covariance matrix.7

Evaluating the Wald statistic becomes a direct test for asymmetric adjustment in the

cointegration relationship.8

Furthermore, we are interested in a comparison of the quantile-dependent coeffi-

cients with the conditional-mean coefficient. The corresponding null hypothesis of the

constancy of the autoregressive coefficient can be formulated as ρt(τi) = ρM for all

τi ∈ [τL, τU ] = T , where ρM is the least squares estimate for ρ in (4). Following Bera

et al. (2014), we estimate a sequence of Wald tests with the null hypothesis ρt(τi) = ρM

and compute a Kolmogorov-Smirnov type statistic. The practical application requires

an estimate of the joint covariance matrix for the QAR- and AR-parameters. For that

purpose we use the above outlined block bootstrap set-up and include the calculation of

the least squares estimate for ρM . Through resampling we can then calculate the boot-

strap variance for ρM and subsequently the covariance, cov(ρM , ρt(τi)) for L ≤ i ≤ U .

The Wald statistic is computed for each i. To evaluate the resulting Wald process, we

7We intend to retain the dependence structure of the data by choosing a replication with an
average block length of l = 2m where m is the most distant lag that still shows a significant impact
in the autocovariance function of zt (see Politis and Romano (1994)). We use 600 replications of the
disequilibrium series zt to estimate the covariance matrix.

8The interpretation of the quantile approach, unfortunately, suffers from subjective decision-making
in that we have to determine which across-quantile comparison are most relevant. For the empirical
part, we therefore display a battery of Wald tests as well as plots of the estimates of ρt to depict the
adjustment behaviour as accurately as possible.
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consider the supremum statistic,

Wn := sup
τ∈T

W (τ), (12)

where Wn does not follow a standard χ2
p-distribution. The proposed method in Bera

et al. (2014) uses an approximation by Davies (1987) that provides an upper boundary

for the p-value. The boundary takes the form of

Pr(Wn > u) ≤ Pr(χ2
p > u) + u

p−1
2

e
u
2 2 p

2 Γ(p2)

∫
T
E

∣∣∣∣∣∣∂W
1
2 (τ)
∂τ

∣∣∣∣∣∣ dτ (13)

where p denotes the number of restrictions. Davies (1987) estimates
∫
T E

∣∣∣∣∂W 1
2 (τ)
∂τ

∣∣∣∣ dτ
from the total variation of the Wald process,

V =
∣∣∣W 1

2 (τ1)−W 1
2 (τL)

∣∣∣+ ∣∣∣W 1
2 (τ2)−W 1

2 (τ1)
∣∣∣+ · · ·+ ∣∣∣W 1

2 (τU)−W 1
2 (τk)

∣∣∣ , (14)

where τ1, τ2, . . . , τk are the turning points of W 1
2 (τ) and L and U are the lower and

upper bound of τ , respectively.

3.3 Monte Carlo simulation results

In this section, we use Monte Carlo experiments to examine the properties of the mod-

ified QKS test applied to residuals of a cointegrating regression. The Engle-Granger

cointegration test based on the ADF statistic and the threshold cointegration test with

TAR adjustment serve as benchmarks. We generate series of length T ∈ {100, 500},

representing small and medium-sized samples, according to the model

yt = 5 + 2xt + ut ut = ρtut−1 + ϑt ϑt ∼ N(0, 1)

xt = xt−1 + εt εt ∼ N(0, 1)
(15)
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to investigate the empirical size and power of the cointegration tests. We discard

additional 100 observations to randomize initial values. The theoretical justification of

the Monte Carlo approach rests on asymptotic results which means that the number

of replications, R, should be large for the Monte Carlo experiment to approximate the

distribution of a test statistic. However, the QKS test involves a bootstrap procedure

and the number of bootstrap replications B are required to be large for the test to be

valid. Therefore, a Monte Carlo experiment concerned with bootstrap procedures has

to fulfil B,R → ∞. Assuming that the number of bootstrap replications is fixed at

B = 600, every added Monte Carlo iteration contributes multiplicatively to the overall

computational cost. To avoid this inefficiency, we refer to the ‘Warp-speed’ bootstrap

described by Giacomini et al. (2013). The authors provide formal results that it is

sufficient to use only one bootstrap replication in each Monte Carlo replication. The

critical values are then computed from the empirical distribution of the R bootstrap

test statistics. We draw R = 5, 000 replications from (15) in each experiment.

Setting ρt = ρ = 1 gives the empirical size of the tests. We compare the power of

the tests according to four different choices of the autoregressive coefficient ρt: First,

we consider constant adjustment ρt = ρ = 0.9. Second, we generate data according to

threshold autoregressive adjustment

ρt =


ρ1 = 0.95 ut−1 ≥ 0

ρ2 = 0.75 ut−1 < 0
(16)

where negative shocks are adjusted at a faster rate. Finally, we specify a

quantile-dependent adjustment behaviour. For that matter, we set ρt = θ(ϑt) =

min {c+ F (ϑt), 0.95}, c ∈ {0.7, 0.8.0.9}, where F (·) is the standard-normal cumulative

distribution function. The speed of adjustment is inversely related to the magnitude
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of shocks with an upper boundary of ρt = 0.95. Furthermore, we use the specifica-

tion ρt = θ̃(ϑt) = min {c+ F (ϑt), 1}, c ∈ {0.5, 0.6.0.7}. This specification allows for

persistence in case of large positive shocks and moderate mean-reversion for negative

shocks.9

Table 1 Empirical size and power of the cointegration tests.

T = 100 T = 500

ρt EG TAR QKS QKS∗ EG TAR QKS QKS∗

Size (5%):
ρ = 1 0.054 0.055 0.036 0.078 0.050 0.050 0.050 0.069

Power:
ρ = 0.9 0.218 0.229 0.067 1 1 0.814

ρ1 = 0.95, ρ2 = 0.75 0.217 0.246 0.078 0.998 1 0.738

θ(ϑt)
c = 0.7 0.168 0.178 0.114 0.996 0.999 0.995
c = 0.8 0.119 0.122 0.055 0.959 0.961 0.825
c = 0.9 0.103 0.103 0.048 0.879 0.880 0.287

θ̃(ϑt)
c = 0.5 0.359 0.392 0.345 1 1 1
c = 0.6 0.190 0.202 0.242 0.987 0.992 1
c = 0.7 0.101 0.104 0.132 0.786 0.786 0.998

Note: The data generating process in (15) along with different specifications of ρt is used for the size and power
experiments. EG denotes the Engle-Granger test. TAR denotes the threshold cointegration test with TAR adjustment.
The quantile unit root test by Koenker and Xiao (2006), QKS∗, without a modification for the use of cointegration
residuals is only reported for the size experiment. The QKS test is accommodated for small sample sizes, i.e. we estimate
the deciles for T = 100 instead of percentiles for T = 500.

The results are reported in Table 1. We find that the modified QKS test is slightly

undersized for small sample sizes but has correct size for T = 500. The quantile unit root

test by Koenker and Xiao (2006) without a modification for the use of cointegration

residuals is still oversized for T = 500. The QKS test lacks power in situations of

constant or TAR adjustment. Changing the autoregressive parameter ρt to a quantile-
9Using the symmetry of the standard-normal distribution, we can easily generate data so that

positive shocks are reverted and large negative shocks persist. The autoregressive coefficient ρt then
follows the function θ(ϑt) = min {c+ F (−ϑt), 1}. However, the results are virtually identical.
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dependent adjustment scheme does not lead to a superior performance of the QKS test

compared to the benchmark cointegration tests if a mean-reversion tendency is assured

over the whole distribution of shocks. However, the QKS test clearly outperforms the

Engle-Granger and threshold cointegration tests if large positive shocks persist.

4 Empirical analysis

Economic theory strongly suggests that a cointegrating relationship between prices of

upstream and downstream fuel markets exists since the prices of downstream goods are

largely influenced by upstream prices. Meyler (2009) decomposes EU petrol and diesel

prices from 2008 and finds that 75% of petrol and 62% of diesel are accounted for by

the crude oil price. The decomposition for the US fuel market shows a similar result

with crude oil accountable for 72% of petrol and 61% of diesel prices. It is therefore not

unrealistic to assume that crude oil and fuel prices share a common stochastic trend. In

what follows, we will first have to test the individual series for their order of integration.

After confirmation of their I(1) property, we will estimate the first step of the Engle-

Granger cointegration procedure to obtain the equilibrium error series zt on which we

will then apply the above outlined quantile autoregression approach to cointegration.

4.1 Data, unit root and cointegration tests

Our data cover the period from January 1999 until November 2013 with weekly obser-

vations. For the crude oil price we use WTI as a proxy for the North American market

and Brent for the European market.10 Both series are taken from the Federal Reserve

Economic Database (FRED) and are converted into cents per litre in their respective

10The properties of different crude oil benchmarks have been discussed in the literature (see Fattouh
(2006) for an extensive exposition). WTI and Brent have been chosen since they are the crude oils
primarily utilized in US and European refineries, respectively. However, switching the benchmarks or
using a third benchmark (Dubai) instead, did not change the qualitative interpretation of our results.
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currencies. The US ex-refinery price for Los Angeles, New York Habor and the Gulf

Coast as well as the retail prices for gasoline and diesel are obtained from Thomson

Reuters Datastream. We use the spot prices at the ARA oil hub for the ex-refinery

prices in Europe. Since regular gasoline is rarely used in Europe, we focus on premium

gasoline. Gasoil, a prestage for diesel, serves as the proxy for the ex-refinery diesel price.

The German gasoline (Super95) and diesel prices with tax and duty excluded/included

(PTD/ITD) are taken from the Weekly Oil Bulletin of the European Commission.

The prices for crude oil and its derivatives experienced a sudden slump during the

financial crisis. This break in the series may influence the statistical properties of unit

root tests which do not account for structural breaks and could lead to a false rejection

of a unit root. Therefore, we choose the unit root test by Busetti and Harvey (2001)

which allows for a structural break in the intercept as well as in the slope coefficient

in both the null hypothesis and alternative. The test is based on the KPSS framework

which tests for random walk components while assuming (trend-) stationarity with a

potential break under the null hypothesis. The results for the Busetti-Harvey (BH)

test suggests a unit root in all available series.11 The differenced time series are deemed

stationary in all cases. The results of the unit root tests are depicted in Table 2.12

Next, we estimate the cointegrating regressions (1) for each stage of the price trans-

mission and test for the stationarity of the residual process zt, using the EG test and the

modified QKS test. Since prices of US retail fuel excluding tax and duty are not avail-

able, we estimate the second stage and single stage for the US and German fuel market

directly for prices that are observed at the pump. Hence, we use a log-transformation of

the prices in these regressions to capture the fact that the mark-up is increasing in costs

11Estimated breakpoints become irrelevant if the null hypothesis of the BH test is rejected.
12The unit root test results for log-transformed prices lead to the same test decision but are not

reported here to conserve space.
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Table 2 Unit root tests of individual price series.

BH ADF
ξ(l) break t-stat lags

Crudes
Brent 0.204∗∗∗ 02/2002 ∆ Brent −19.50∗∗∗ 1
WTI 0.103∗∗∗ 02/2005 ∆ WTI −20.88∗∗∗ 1

Ex-refinery prices
Diesel (ARA) 0.206∗∗∗ 02/2004 ∆ Diesel (ARA) −18.87∗∗∗ 1
Gasoline (ARA) 0.199∗∗∗ 06/2011 ∆ Gasoline (ARA) −19.37∗∗∗ 1
Diesel (US) 0.156∗∗∗ 10/2004 ∆ Diesel (US) −18.94∗∗∗ 1
Gasoline (US) 0.125∗∗∗ 09/2004 ∆ Gasoline (US) −20.58∗∗∗ 1

Retail prices
Diesel (US) 0.154∗∗∗ 10/2004 ∆ Diesel (US) −10.58∗∗∗ 2
Gasoline (US) 0.140∗∗∗ 10/2004 ∆ Gasoline (US) −9.89∗∗∗ 2
Diesel (GER) 0.136∗∗∗ 05/2009 ∆ Diesel (GER) −20.86∗∗∗ 1
Gasoline (GER) 0.100∗∗∗ 02/2009 ∆ Gasoline (GER) −19.51∗∗∗ 1

PTD retail prices
Diesel (GER) 0.228∗∗∗ 09/2009 ∆ Diesel (GER) −21.06∗∗∗ 1
Gasoline (GER) 0.182∗∗∗ 04/2011 ∆ Gasoline (GER) −19.86∗∗∗ 1

Note: BH denotes the Busetti-Harvey test. The BH test equation includes a constant and a linear time trend. Critical
values are 10%: 0.033, 5%: 0.041, 1%: 0.054. The ADF test equation includes a constant. The number of lags is based
on the Bayesian Information Criterion (BIC). Critical values are 10%: −2.57, 5%: −2.86, 1%: −3.43.
∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1

due to the VAT.13 However, this does not allow to isolate the effects of the taxation

structure. To further investigate this issue, we compare the results for German ITD

prices with the German PTD prices. The mark-up for spot fuel prices and retail prices

excluding tax and duty does not increase in costs, hence we use a linear specification

in these instances.14 The results are presented in Table 3.

The cointegration tests indicate an overall mean-reversion behaviour, with the ex-

ception of the German diesel spot/diesel ITD relationship where we find evidence for

EG cointegration but cannot reject the null hypothesis of no quantile-dependent cointe-

13Estimating the cointegration regressions in a linear specification yields qualitatively identical
results for the asymmetry patterns.

14Likewise, a log-specification does not alter the results substantially.

19



gration. This discrepancy can be explained with the Monte Carlo simulation results in

Subsection 3.3 in which the QKS test has lower power than the EG test if adjustment

is symmetrical. We therefore conjecture the residual process zt to be a globally station-

ary process which implies a cointegrating price relationship. In the next section, we

proceed with the estimation of the quantile autoregressive model and test the resulting

quantile-dependent coefficients for their degree of asymmetry.

Table 3 Estimates of the equilibrium equations and residual-based cointegration
tests.

Intercept Slope EG QKS
First stage

DieselARA 1.096 1.128 −5.377∗∗∗ 10.360∗∗∗
GasolineARA 3.412 1.149 −6.609∗∗∗ 8.603∗∗∗
DieselUS −2.967 1.289 −5.095∗∗∗ 6.183∗∗
GasolineUS 0.919 1.130 −6.278∗∗∗ 10.530∗∗∗

Second stage

DieselGER 3.034 0.469 −4.311∗∗∗ 4.949
GasolineGER 3.467 0.381 −4.769∗∗∗ 6.016∗∗
DieselUS 1.576 0.693 −7.408∗∗∗ 6.907∗∗
GasolineUS 1.591 0.682 −10.040∗∗∗ 9.714∗∗∗

Single stage

DieselGER 3.123 0.464 −4.654∗∗∗ 5.581∗
GasolineGER 3.658 0.352 −5.132∗∗∗ 6.365∗∗
DieselUS 1.474 0.755 −5.384∗∗∗ 7.555∗∗
GasolineUS 1.690 0.681 −5.716∗∗∗ 5.751∗∗

Note: EG denotes the Engle-Granger test. The number of lags is based on the Bayesian Information Criterion (BIC).
Critical values are taken from MacKinnon (2010), 10%: −3.05, 5%: −3.35, 1%: −3.91. QKS denotes the modified
quantile Kolmogorov-Smirnov test with 600 bootstrap replications.
∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1
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4.2 Quantile autoregression results

For the empirical analysis, we apply the QAR(p) model in (4) to US fuel market data

and German fuel market data. The residuals in both cases originate from the estimates

of the long-run equilibrium equation (1). We use the modified Barrodale and Roberts

algorithm for the quantile regression (Koenker and d’Orey (1987)). The estimated

quantile-dependent coefficients are plotted for quantiles between 0.05 and 0.95 (see

Figure 1 and Figure 2). The remaining quantiles are not displayed since solving (3)

results in increasingly inaccurate estimates for tail quantiles and the overall pattern is

already sufficiently revealed by the constrained quantile sequence.

We begin with the first stage of the price transmission chain in the US market. We

restrict the empirical analysis to the Gulf coast prices since the US refinery industry

is concentrated in this region.15 The estimated autoregressive coefficients (ρt) for dis-

equilibria series of the diesel/WTI and gasoline/WTI relationships are plotted in the

upper panel of Figure 1. We observe a upward-sloping curve for the quantile-dependent

coefficients in both relationships. The estimated autoregressive coefficient is visibly

smaller than one for lower quantiles, corresponding to large negative deviations. This

means that disequilibria induced by crude oil prices that are higher in relation to the

ex-refinery prices are adjusted relatively fast over time. Conversely, the point estimates

for upper quantiles are close to one indicating that adjustment is slow when crude oil

prices are too low.

Generally, the speed of pass-through is quite slow (see Table 4). The half-life period

(50% of pass-through reached) of shocks to the diesel/WTI relationship is 7.9 weeks

for negative deviations from the long-run equilibrium (25% quantile) and 44.6 weeks

for positive deviations from the long-run equilibrium (75% quantile). 90% of a shock is

passed through after 26.2 weeks for negative deviations and 148 weeks for positive devi-
15The results for Los Angeles and New York Habor prices display a similar pattern.
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Fig. 1 Estimation results for the quantile-dependent adjustment coefficient ρt(τ) in the
US fuel market. The upper panel, middle panel and lower panel display the first stage,

second stage and single stage, respectively. Diesel prices are on the left and gasoline prices
are on the right. Shaded areas correspond to a 95% bootstrap confidence interval.
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ations. Correspondingly, the half-life period of shocks to the gasoline/WTI relationship

is 5.4 weeks for negative deviations and 48.8 weeks for positive deviations while 90% of

the shock is passed through after 17.9 weeks for negative deviations and 162 weeks for

positive deviations.

Table 4 Pass-through of long-run equilibrium shocks in weeks.

lower tail upper tail

50% 60% 70% 80% 90% 50% 60% 70% 80% 90%
First stage

DieselARA 4.5 5.9 7.8 10.4 14.9 253 335 440 588 842
GasolineARA 3.6 4.8 6.3 8.4 12.0 10.2 13.5 17.7 23.7 33.9
DieselUS 7.9 10.4 13.7 18.3 26.2 44.6 58.9 77.4 104 148
GasolineUS 5.4 7.1 9.4 12.5 17.9 48.8 64.6 84.8 113 162

Second stage

DieselGER 1.7 2.3 3.0 4.0 5.7 2.2 2.9 3.8 5.1 7.3
GasolineGER 2.2 2.9 3.8 5.1 7.3 2.3 3.1 4.1 5.4 7.8
DieselUS 3.9 5.2 6.8 9.0 12.9 4.4 5.9 7.7 10.3 14.8
GasolineUS 2.9 3.8 5.0 6.7 9.5 3.1 4.1 5.4 7.2 10.3

Single stage

DieselGER 2.9 3.8 5.0 6.7 9.6 4.6 6.1 7.9 10.6 15.2
GasolineGER 4.1 5.5 7.2 9.6 13.7 4.2 5.6 7.4 9.9 14.1
DieselUS 5.2 6.9 9.1 12.1 17.4 8.7 11.5 15.1 20.2 27.0
GasolineUS 6.0 8.0 10.5 14.0 20.0 7.3 9.6 12.7 16.9 24.2

Note: The pass-through durations for the lower tail are based on the 25% conditional-quantile estimations, while the
upper tail results are estimated based on the 75% quantile. The durations are computed for the hypothetical case that
the quantile-dependent adjustment coefficients stay at the 25% (75%) quantile. It needs to be emphasized that this
situation is unrealistic since the coefficients are allowed to change every period.

Interestingly, the point estimates indicate that extreme positive shocks are not re-

verted at all. The QAR(p) model in principle allows for a locally persistent or locally

explosive behavior of zt as long as the disequilibrium process is globally mean-stationary.
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However, in this case the confidence bands for tail quantiles are relatively wide and in-

clude values below one so that we do not find significant statistical evidence for a

lack of adjustment. A notion which is supported by the results of the EG and QKS

cointegration test rejecting the null of no cointegration for all first stage relationships

(Table 3).

The point estimates for gasoline (right panel) show slightly stronger asymmetric

behaviour than the point estimates for diesel (left panel). The supremum Wald test

for equality of conditional-mean and quantile effects, depicted in Table 5, signals that

the quantile-dependent coefficients are significantly different from the coefficients of

the conditional-mean model only for gasoline/WTI. A comparison of the tails of the

distribution points towards a strong asymmetry for diesel and gasoline. This is in line

with the graphical illustration. The results for the first stage suggest that the refinery

sector is able to delay the pass-through of price decreases in the US crude oil market,

while price increases are passed through at a significantly faster rate.

In the second stage, we analyze the transmission from ex-refinery prices to retail

prices at the pump. The point estimates, depicted in the middle panel of Figure 1, are

more concentrated around the baseline conditional-mean value. The conditional-mean

estimates indicate that shocks are passed through faster in the gasoline market than in

the diesel market. The half-life period of shocks to the diesel/ex-refinery relationship

is 3.9 weeks for negative deviations and 4.4 weeks for positive deviations. The half-

life period of shocks to the gasoline/ex-refinery relationship is 2.9 weeks for negative

deviations and 3.1 weeks for positive deviations. The supremum Wald test supports the

hypothesis that the quantile effects are not statistically different from the conditional-

mean effect and a comparison at the tails indicates no asymmetries.

In the single stage transmission process, we find a slightly upward-sloping curve

for the diesel/WTI relationship while the estimated quantile-dependent adjustment
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coefficients for the gasoline/WTI relationship largely coincide with the conditional-

mean estimate (lower panel of Figure 1). The supremum Wald test for equality and

the asymmetry tests do not reveal any asymmetries at reasonable significance levels.

As expected, the speed of adjustment is slower than in the second stage. 50% (90%) of

a shock to the diesel/WTI relationship is adjusted after 5.2 (17.4) weeks for negative

deviations and 8.7 (27.0) weeks for positive deviations, while 50% (90%) of a shock to

the gasoline/ex-refinery relationship is 6.0 (20.0) weeks for negative deviations and 7.3

(24.2) weeks for positive deviations.

Table 5 Supremum Wald test for equality of mean and quantile effects and single
Wald tests for equality of the autoregressive coefficients across quantiles.

Wn W (τ15 = τ85) W (τ10 = τ90) W (τ5 = τ95) W (R1) W (R2)
First stage

DieselARA 17.00∗∗∗ 16.07∗∗∗ 15.34∗∗∗ 12.55∗∗∗ 14.17∗∗∗ 15.54∗∗∗
GasolineARA 10.36∗∗ 7.46∗∗∗ 6.99∗∗∗ 9.54∗∗∗ 8.63∗∗∗ 8.37∗∗∗
DieselUS 6.58 5.48∗∗ 5.87∗∗ 5.34∗∗ 6.47∗∗ 6.80∗∗∗
GasolineUS 18.37∗∗∗ 7.99∗∗∗ 12.44∗∗∗ 13.72∗∗∗ 17.07∗∗∗ 14.30∗∗∗

Second stage

DieselGER 6.56 2.07 1.77 1.70 2.07 2.34
GasolineGER 1.87 0.15 0.56 0.00 0.26 0.27
DieselUS 1.89 0.84 0.14 0.16 0.18 0.31
GasolineUS 3.97 0.07 0.28 0.27 0.04 0.17

Single stage

DieselGER 6.28 1.53 3.11∗ 4.65∗∗ 4.80∗∗ 4.25∗∗
GasolineGER 7.49 0.05 0.16 3.05∗ 1.46 0.35
DieselUS 4.54 1.94 1.40 1.94 1.43 1.43
GasolineUS 3.59 0.06 0.29 0.00 0.06 0.08

Note: Wn denotes the supremum Wald test for equality of mean and quantile effects with null hypothesis ρM =
ρt(τ5) = ρt(τ6) = · · · = ρt(τ95). The Wald tests W (τ15 = τ85), W (τ10 = τ90) and W (τ5 = τ95) test the null
hypothesis ρt(τ15) = ρt(τ85), ρt(τ10) = ρt(τ90) and ρt(τ5) = ρt(τ95), respectively. W (R1) corresponds to a Wald test
under the hypothesis ρt(τ5) + · · · + ρt(τ9) = ρt(τ91) + · · · + ρt(τ95) and W (R2) to a Wald test under the hypothesis
ρt(τ5) + · · ·+ ρt(τ14) = ρt(τ86) + · · ·+ ρt(τ95).
∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1
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Fig. 2 Estimation results for the quantile-dependent adjustment coefficient ρt(τ) in the
German fuel market. The upper panel, middle panel and lower panel display the first stage,
second stage and single stage, respectively. Diesel prices are on the left and gasoline prices

are on the right. Shaded areas correspond to a 95% bootstrap confidence interval.
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We now turn to the German fuel markets. The quantile-dependent adjustment

coefficients in the first stage transmission are depicted in the upper panel of Figure 2 and

show a similar pattern compared to their US counterparts. Gasoil and premium gasoline

at the ARA hub display a steep upward-directed slope. Since the null hypothesis of

equality of the conditional-mean coefficient and all quantile-dependent coefficients is

rejected, we find significant quantile effects. Also, the across quantiles comparison are

highly significant. The half life of shocks to the gasoil/Brent relationship is 4.5 weeks

for negative deviations and 253 weeks for positive deviations. This means that large

positive deviations are not effectively adjusted by the system. Premium gasoline is

adjusted at a faster rate so that we estimate the half life of shocks to the premium

gasoline/Brent relationship to be 3.6 weeks for negative deviations and 10.2 weeks for

positive deviations.

A possible source for the strong signs of asymmetry in the first stage in Europe

and the US might be the fact that the oil refinery market has a relatively small num-

ber of competitors due to the capital-intensive nature of this industry. In 2013, the

refining capacity of the US was spread across 57 refinery companies operating 139 re-

fineries (US Energy Information Agency (2013)), while 106 refineries were operated in

Europe (FuelsEurope (2014)). Large vertically integrated operations which are involved

in several upstream activities might also reduce competition. Additionally, the price

formation process in the crude oil and fuel spot markets is unusual. The product is sold

in large quantities and trading in the ex-refinery petroleum market depends highly on

the benchmark prices provided by price reporting agencies (PRA). Platts, the leading

PRA, collects prices by a window or market-on-close process (MOC) in which bids, of-

fers and the trade volume are assessed and prices are published as an end-of-day value.

The system has been harshly criticized lately since it rests on voluntary and selective

disclosure as well as subjective judgement of the PRA. Even without proclaiming in-
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tentional manipulation or collusive action, the MOC price formation is far from a full

information pricing and opens up opportunities for delayed price reactions.

Next, we analyze the prices transmissions for German ITD prices. Since the mineral

oil tax and the VAT have changed during our sample, we have to control for structural

breaks in the intercept by including the appropriate dummy variables and interaction

terms.16 The second stage transmission does not reveal significant asymmetries. The

estimated conditional-mean adjustment rates for Super95 and diesel are nearly identical

while the confidence bands for Super95 tend to be wider for the lower tail of the distri-

bution. The half life of shocks to the diesel/gasoil relationship is 1.7 weeks for negative

deviations and 2.2 weeks for positive deviations. Similarly, the half life of shocks to

the Super95/premium gasoline relationship is 2.2 weeks for negative deviations and 2.3

weeks for positive deviations.

The results for the single stage are depicted in the lower panel of Figure 2. The

curve is slightly upward-sloping for diesel so that crude oil price reductions are delayed.

In contrast, we find a downward-sloping curve for upper quantiles in the Super95/Brent

relationship corresponding to a situation in which the customers experience an immedi-

ate retail price decrease caused by lower crude oil prices, but price increases are delayed.

Equality across quantiles can only be rejected for diesel. The differences between the

second stage and the single stage are more pronounced compared to the US market.

This might be explained by the higher concentration of the European refinery sector

leading to stronger asymmetries in the first stage price transmission. Differences be-

tween gasoline and diesel might be explained by the fact that EU refineries were initially

configured to produce large amounts of gasoline and fuel oil but have struggled to meet

16The cointegration tests are performed without controlling for structural breaks in the intercept
since the modified QKS test in Subsection 3.1 does not account for structural shifts in the long-
run equilibrium relationship. However, since the timing of the breaks is known beforehand and the
adjustment rates increase after inclusion of the dummy variables, we can interpret the p-values in
Table 3 as upper bounds.
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an increasing demand for diesel after the introduction of favourable diesel excise taxes.

The results in this section are robust to a sample split at the time of the financial

crisis. Furthermore, we find only minor violations of the monotonicity requirement on

the conditional-quantile functions (see (Koenker and Xiao, 2006; Chernozhukov et al.,

2010)).

4.3 Effects of the taxation structure on fuel price transmissions

In contrast to the US market, fuel prices excluding tax and duty are available for the

German market. Hence, we are now able to investigate whether the tax structure masks

any asymmetries in the distribution stages. Greenwood-Nimmo and Shin (2013) study

fuel price adjustments in the UK and find that the tax structure masks asymmetries at

the pump. However, the UK uses an escalator type fuel duty policy which is different

from the fixed sum mineral oil tax in Germany. It is therefore of interest to find out

whether the same difference between PTD and ITD prices exist in the German fuel

market. Also, we are able to check whether the change from a log specification to a

linear specification has any influence on the speed of pass-through and the adjustment

patterns.

The cointegration equation for PTD prices is estimated in a linear specification and

the results for the second stage and single stage are displayed in the upper and lower

panel of Figure 3, respectively. Prices before tax and duty and prices at the pump

are on average adjusted at a similar rate. However, the results reveal small differences

between the adjustment patterns for PTD and ITD prices. In case of diesel, the half

life of shocks in the second stage is 3.1 weeks for negative deviations and 1.8 weeks for

positive deviations. For Super95, the half life of shocks in the second stage is 2.8 weeks

for negative deviations and 1.8 weeks for positive deviations.

In the second stage, we find downward-sloping conditional-quantile curves for diesel
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and Super95, but only the differences across quantiles for Super95 are statistically

significant. The reaction to increases in production costs and subsequent adjustment of

retail prices seem more difficult for the retailers in the Super95 market. A higher price

elasticity of demand for gasoline could imply that customers postpone refuelling their

cars when they use them for expendable activities or they switch to alternative modes

of transportation. This pattern is not found in the single stage where the conditional-

quantile curve is again upward-sloping for diesel and almost flat for Super95. Since the

differences between PTD and ITD prices are small, we find no evidence that the tax

structure in Germany allows retailers to delay prices decreases.

5 Conclusion

The quantile autoregression approach to asymmetric pricing in the US and German fuel

markets leads to new insights about the pricing mechanisms. Using quantile regression

techniques, we are able to quantify the degree of asymmetric price transmission without

explicitly specifying distinct regimes and estimating the associated threshold values, or

without specifying a particular parametric smooth transition framework. Therefore, the

estimations are free of subjectivity and the employed model is parsimonious in nature.

Applying this methodology to two large, geographically separated fuel markets, we are

able to relate potential similarities or differences in the empirical findings to the specific

structures of the two markets.

Our results highlight the importance of separating the price transmission chain in

individual steps. The price transmission at the second stage and single stage turn out

to be mostly symmetric, while we find evidence for a strong degree of asymmetry in the

first stage of both markets. This finding might be related to indirect price discovery

through a price reporting agency and the strong vertical integration in the US and

European refinery sectors. Furthermore, the literature points to oligopolistic structures
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and the storage capacity to have some influence on the price transmission process from

crude oil prices to the fuel spot markets (Bacon, 1991; Manning, 1991; Kaufmann and

Laskowski, 2005). However, we are not able to identify the source of asymmetry in this

paper and leave this open for further research.

Interestingly, the asymmetries found for the refinery stage seem to vanish when we

turn to direct adjustment of retail prices to upstream products. This is a surprising

result considering that the meta-analysis by Perdiguero-García (2013) reports a greater

likelihood of price asymmetries for the retail price segment. A contributing factor could

have been the fact that we use prices at the pump which include tax and duty. How-

ever, further analysis of German fuel prices excluding tax and duty reveals that the tax

structure in Germany does not significantly affect the pass-through of price changes. In

terms of asymmetric adjustment behaviour, the retail fuel prices in Germany, particu-

larly Super95, show a pattern which contradicts the widespread perceptions. Indeed,

not the decreases in fuel spot prices are adjusted at a slower rate but rather the in-

creases appear to be delayed. This has a positive effect on customer welfare and signals

a highly competitive fuel market. However, the differences in pass-through are not

statistically significant for retail diesel prices.

For the US retail fuel market, we find no statistically significant asymmetry in both

gasoline and diesel. This has to be considered a surprising result in the context of

previous studies that argue for market power as a possible explanation for empirically

observed asymmetric adjustments (Fosten (2012) and Perdiguero-García (2013)). Al-

though the smaller diesel demand side consists almost exclusively of professional users

and small-scale enterprises which are usually not able to delay their purchase in times

of increasing fuel prices, we find no evidence that retailers are able to exploit the market

structure.

In summary, it can be stated that fuel spot prices are asymmetrically adjusted to
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crude oil prices both in Europe and the US but we find no convincing evidence that

these asymmetries are passed on to the retail fuel markets.
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Fig. 3 Estimation results for the quantile-dependent adjustment coefficient ρt(τ) in the
German fuel market (excluding tax and duty). The upper panel and lower panel display the
second stage and single stage, respectively. Diesel prices are on the left and gasoline prices

are on the right. Shaded areas correspond to a 95% bootstrap confidence interval.
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Table 6 Additional estimations and tests for German fuel prices excluding tax and duty.

Intercept Slope EG QKS Wn W (τ15 = τ85) W (τ10 = τ90) W (τ5 = τ95) W (R1) W (R2)
Second stage

DieselGER 7.774 1.098 −8.672∗∗∗ 6.970∗∗ 11.59∗∗ 4.15∗∗ 4.19∗∗ 4.55∗∗ 4.29∗∗ 6.13∗∗
GasolineGER 7.232 0.945 −9.413∗∗∗ 9.252∗∗∗ 11.59∗∗ 4.38∗∗ 1.15 2.13 1.24 2.24

Single stage

DieselGER 8.874 1.242 −6.997∗∗∗ 8.365∗∗ 2.68 0.18 0.10 0.57 0.29 0.22
GasolineGER 10.303 1.092 −6.554∗∗∗ 7.577∗∗ 6.24 2.53 2.63 3.77∗ 3.03∗ 2.93∗

Pass-through of long-run equilibrium shocks in weeks

lower tail upper tail

50% 60% 70% 80% 90% 50% 60% 70% 80% 90%
Second stage

DieselGER 3.1 4.1 5.4 7.2 10.3 1.8 2.4 3.2 4.3 6.1
GasolineGER 2.8 3.8 4.9 6.6 9.5 1.8 2.4 3.2 4.2 6.0

Single stage

DieselGER 2.5 3.3 4.3 5.8 8.3 4.2 5.6 7.3 9.8 14.0
GasolineGER 5.0 6.6 8.7 11.6 16.7 3.6 4.8 6.3 8.5 12.1

Note: EG denotes the Engle-Granger test. The number of lags is based on the Bayesian Information Criterion (BIC). Critical values are taken from MacKinnon
(2010), 10%: −3.05, 5%: −3.35, 1%: −3.91. QKS denotes the modified quantile Kolmogorov-Smirnov test with 600 bootstrap replications. Wn denotes the supremum
Wald test for equality of mean and quantile effects with null hypothesis ρM = ρt(τ5) = ρt(τ6) = · · · = ρt(τ95). The Wald tests W (τ15 = τ85), W (τ10 = τ90) and
W (τ5 = τ95) test the null hypothesis ρt(τ15) = ρt(τ85), ρt(τ10) = ρt(τ90) and ρt(τ5) = ρt(τ95), respectively. W (R1) corresponds to a Wald test under the hypothesis
ρt(τ5) + · · ·+ ρt(τ9) = ρt(τ91) + · · ·+ ρt(τ95) and W (R2) to a Wald test under the hypothesis ρt(τ5) + · · ·+ ρt(τ14) = ρt(τ86) + · · ·+ ρt(τ95). The pass-through durations
for the lower tail are based on the 25% quantile, while the upper tail results are estimated based on the 75% quantile. The durations are computed for the hypothetical
case that the quantile-dependent adjustment coefficients stay at the 25% (75%) quantile. It needs to be emphasized that this situation is unrealistic since the coefficients
are allowed to change every period.
∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1
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