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Abstract

In this paper, we develop new threshold cointegration tests with SETAR and
MTAR adjustment allowing for the presence of structural breaks in the equi-
librium equation. We propose a simple procedure to simultaneously estimate
the previously unknown breakpoint and test the null hypothesis of no cointegra-
tion. Thereby, we extend the well-known residual-based cointegration test with
regime shift introduced by Gregory and Hansen (1996a) to include forms of non-
linear adjustment. We derive the asymptotic distribution of the test statistics
and demonstrate the finite-sample performance of the tests in a series of Monte
Carlo experiments. We find a substantial decrease of power of the conventional
threshold cointegration tests caused by a shift in the slope coefficient of the equi-
librium equation. The proposed tests perform superior in these situations. An
application to the ‘rockets and feathers’ hypothesis of price adjustment in the US
gasoline market provides empirical support for this methodology.
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1 Introduction

The residual-based threshold cointegration models developed by Enders and Siklos
(2001) are a useful addition to the toolbox of researchers working with multivariate
time series. They are easy to apply, allow for discontinuous adjustment to a long-run
equilibrium and nest linear cointegration in the sense of Engle and Granger (1987) as
a special case. The dynamics of the adjustment process are described by a two-regime
threshold autoregressive (TAR) model which partitions the residual process according
to a threshold value and specifies different coefficients of the leading autoregressive
lag for each regime. It can therefore be considered a restricted model under the gen-
eral class of TAR models described by Tong (1983, 1990). A prominent application in
the economics literature is the empirical analysis of asymmetric price transmissions in
which case non-stationary price series form a cointegrating relationship and may fea-
ture asymmetric adjustment to the long-run equilibrium (Meyer and Cramon-Taubadel
(2004), Perdiguero (2013) and citations therein). The speed of adjustment for these
processes is usually assumed to depend on the sign and magnitude of the deviations
from the long-run equilibrium. Empirical studies ultimately aim to test the null hypoth-
esis of symmetric adjustment against the alternative of asymmetric adjustment (Frey
and Manera, 2007). While threshold cointegration models are suitable to study these
cases, they do not account for possible structural change in the long-run relationship.

It is well-known that conventional residual-based cointegration tests perform poorly
when a cointegration relationship has structural breaks (see, for example, Gregory et al.
(1996)). Maki (2012) found that the power property of threshold cointegration tests is
more robust to structural breaks than, for example, Engle-Granger cointegration tests
assuming linear adjustment. Nevertheless, the power of all residual-based cointegration
tests is impaired if the tests do not model structural breaks explicitly. Consequently, it
is difficult to provide evidence for the existence of a cointegration relationship. Further-
more, the estimated residual series does not approximate the true equilibrium errors if
the cointegrating vector does not account for structural change. Hence, subsequently
applied error correction models produce biased adjustment coefficients and tests for
asymmetry become invalid.

An extensive body of literature exists on the problem of structural instability in time
series. Based on the seminal work of Perron (1989), several unit root tests accounting
for structural change have been developed (see, inter alia, Zivot and Andrews (1992),
Lumsdaine and Papell (1997) and Lee and Strazicich (2003)). Structural breaks in
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linear cointegration models are addressed in Gregory and Hansen (1996a,b), Carrion-
i Silvestre and Sanso (2006), Arai and Kurozumi (2007), Westerlund and Edgerton
(2007), Hatemi-J (2008), Davidson and Monticini (2010), Kejriwal and Perron (2010)
and Maki (2012). For comprehensive surveys on structural change in time series models,
see Perron (2006) and Aue and Horváth (2013). Gregory and Hansen (1996a), hence-
forth GH, propose a residual-based cointegration test which accounts for one structural
break in the long-run equilibrium equation, i.e. a breakpoint at which the cointegrated
system attains a new equilibrium. Their test does not require a pre-specified break-
point which is rarely known in empirical applications. Instead, a single breakpoint
with unknown timing is determined from the data based on one of three structural
break models. However, the GH test is only suitable for cointegration models with lin-
ear adjustment.1 We contribute to the literature by extending the GH test to include
two forms of non-linear adjustment. These new tests are residual-based and use ei-
ther a self-exciting threshold autoregressive (SETAR) model or a momentum threshold
autoregressive (MTAR) to describe the adjustment toward equilibrium. Thereby, we
also robustify both cointegration tests proposed by Enders and Siklos (2001) against a
structural break in the long-run equilibrium equation.

We derive the limiting distributions of the test statistics considered in this paper
and provide a formal proof. The properties of the proposed test are investigated by
Monte Carlo experiments for a variety of models ranging from linear adjustment with
no structural break to non-linear adjustment with structural break in the intercept and
slope coefficients. The results suggest that a break in the intercept does not influence
the power of the threshold cointegration tests enough to justify modelling the structural
break. However, a break in the slope coefficients reduces the power of the Enders-Siklos
tests substantially such that our proposed tests perform clearly better than their bench-
marks. In addition, we find that the unknown breakpoints are estimated accurately by
the new procedure.

The methodology is applied to empirical data in the context of the ‘rockets and
feathers’ hypothesis. We use monthly US gasoline market data covering the Global
Financial Crisis and a substantial transformation of the US refining industry. We
illustrate that empirical evidence for the existence of a long-run relationship between
neighbouring stages of the gasoline value-chain can only be provided if we control for a
structural break in the cointegrating vector. Using a cointegration model with SETAR

1The effects on the power properties of linear cointegration tests, if the equilibrium error follows a
nonlinear adjustment process, are reported in Pippenger and Goering (2000).
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adjustment and the possibility of structural breaks, we find evidence for asymmetric
adjustment from spot gasoline to retail gasoline prices. The MTAR model yields similar
results.

The paper is organized as follows. Section 2 describes the models and the cointe-
gration testing procedure, Section 3 presents the asymptotic distributions of the test
statistics. Section 4 is devoted to the Monte Carlo simulation study. Section 5 reports
the results of the empirical application, and Section 6 concludes with a summary and
suggestions for future research.

2 Models and cointegration testing

The long-run equilibrium equation of Engle-Granger cointegration models is given by

yt = µ+ α1x1t + α2x2t + · · ·+ αmxmt + et

= µ+ α′xt + et (1)

where t = 1, 2, . . . , T is the time series index, yt and xt = (xit, x2t, . . . , xmt)′ are I(1)
variables, µ is an intercept, α′ = (α1, α2, . . . , αm) is a vector of slope coefficients and et is
the equilibrium error. The null hypothesis of no cointegration is rejected if the residuals
obtained from least squared estimation of Equation (1) are mean-zero stationary. Since
the parameters µ and α are assumed to be time-invariant, a residual-based cointegration
test becomes invalid if the long-run equilibrium is subject to structural change.

Following Perron (1989) and Gregory and Hansen (1996a), we consider three forms
of structural change.2 First, in the C model, a break in the intercept µ is considered.
This model captures events that cause a parallel shift of the equilibrium equation.
Second, the C/T model adds an additional trend term to the equilibrium equation.
Third, in the C/S model, a simultaneous break in the constant and slope parameters is
specified. This model allows for the possibility of a complete regime shift at one point

2We restrict our analysis to these three models. However, our methodology can easily be adapted
for other structural break models, as for example given in Gregory and Hansen (1996b) and Hatemi-J
(2008).
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in time. The three models are given as follows,

(C) yt = µ1 + µ2ϕt,τ + α′xt + etτ

(C/T ) yt = µ1 + µ2ϕt,τ + δt+ α′xt + etτ (2)

(C/S) yt = µ1 + µ2ϕt,τ + α′1xt + α′2xtϕt,τ + etτ

where µ1, µ2 are constants, α1 = (α11, α12, . . . , α1m)′ and α2 = (α21, α22, . . . , α2m)′ are
slope coefficients. The dummy variable ϕt,τ is defined as

ϕt,τ =

 1 if t ≥ [Tτ ]

0 if t < [Tτ ]
, (3)

where τ ∈ (0, 1) denotes the relative timing of the breakpoint (break fraction), and [·]
denotes integer part. The timing of the breakpoint is rarely known in empirical applica-
tions so that the GH test is constructed without the need of pre-specified breakpoints.
More specifically, a grid search over all possible breakpoint is employed, i.e. the struc-
tural change model is repeatedly estimated for each possible break fraction τ ∈ T . The
set T can be any compact subset of (0, 1) which excludes endpoint results. GH suggest
a lateral trimming of 15 percent (T = (0.15, 0.85)) and, for computational reasons,
consider only integer steps. Estimating one of the structural break models in (3) by
least squares for each breakpoint yields a sequence of residuals. The GH test applies
the ADF test to each sequence and evaluates the null hypothesis of no cointegration
based on the smallest values of the t ratios across all τ ∈ T . If the null hypothesis is
rejected, the break fraction τ̂ corresponding to the infimum statistic is considered to be
the most likely breakpoint.

In order to account for asymmetric adjustment, the two-regime SETAR model is
now used to describe the adjustment toward equilibrium. The SETAR model for the
breakpoint-specific equilibrium error process etτ is given by

∆etτ = ρ1et−1τ1{et−1τ ≥ λ}+ ρ2et−1τ1{et−1τ < λ}+
K∑
j=1

γj∆et−jτ + εtτK , (4)

where 1{·} denotes the Heaviside indicator function, the parameter λ is a possibly non-
zero threshold value and εtτK is a stationary mean zero error term. The coefficient ρ1

measures the mean-reversion toward the attractor after a shock greater than or equal
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to λ whereas ρ2 measures the mean-reversion toward the cointegrating vector after a
shock less than λ. The indicator function in this case is set according to the level of
et−1τ .

In an alternative specification, suggested by Enders and Granger (1998) and Caner
and Hansen (2001), the indicator function is set depending on ∆et−1τ . The two-regime
MTAR model is given by

∆etτ = ρ1et−1τ1{∆et−1τ ≥ λ∗}+ ρ2et−1τ1{∆et−1τ < λ∗}+
K∑
j=1

γj∆et−jτ + εtτK .

In this specification, ρ1 measures the mean-reversion toward the attractor if a shock
has momentum greater than or equal to λ∗ whereas ρ2 measures the mean-reversion
toward the cointegrating vector if a shock has momentum less than λ∗.

Under the null hypothesis of no cointegration, ρ1 = ρ2 = 0, the data-generating
process (DGP) of etτ is symmetric and a unit root is present in both regimes. Models
(4) and (5) are a special case of the general class of threshold autoregressive models
in that they do not allow for regime-specific deterministic terms and regime-specific
dynamics beyond the leading autoregressive lag. This restriction is convenient since
it circumvents the problem of having an identified threshold under the null hypothesis
resulting in an asymptotic distribution of the test statistic that depends on nuisance
parameters (see Caner and Hansen (2001) for a more detailed discussion in the context of
MTAR processes with a unit root). Furthermore, the Engle-Granger test for symmetric
adjustment (ρ1 = ρ2) is itself a special case of (4) and (5). Petruccelli and Woolford
(1984) show that the stationarity of the SETAR process is ensured if ρ1 < 0, ρ2 < 0
and (1 + ρ1)(1 + ρ2) < 1 for any value λ. In the case of MTAR processes, Lee and
Shin (2000) prove that stationarity is ensured if ρ1 < 0, ρ2 < 0, (1 + ρ1)(1 + ρ2) < 1,
(1+ρ1)(1+ρ2)2 < 1 and (1+ρ1)2(1+ρ2) < 1. Assuming stationarity, Tong (1983, 1990)
demonstrated that least squares estimators of ρ1 and ρ2 are asymptotically normally
distributed. Enders and Siklos (2001) recommend a Wald-type F -test to test the null
hypothesis of no cointegration in their model without structural breaks. However,
since the F -test can lead to rejection of the null hypothesis when only one coefficient
is negative, the test should only be applied if both point estimates have the correct
sign and suggest a mean-reverting behaviour. In other words, the one-sided alternative
ρ1 < 0 ∧ ρ2 ≥ 0 or ρ2 < 0 ∧ ρ1 ≥ 0 should not lead to rejection of the null hypothesis.
Please also see Caner and Hansen (2001) for an extensive discussion of this issue.
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In the case of a cointegration model with potential structural break, we propose
the following cointegration test: First, an appropriate structural break model is se-
lected from (3) and the cointegrating regression is estimated by least squares for each
break fraction τ ∈ T .3 Then, the SETAR or MTAR regression is estimated and the
F -statistic, Fτ , is computed for each sequence of residuals. Since the indicators are
orthogonal, we can write the test statistic as

Fτ = t21 + t22
2 , (5)

where t1 and t2 are the t ratios for ρ̂1 and ρ̂2 from regression (4) or (5). The null
hypothesis of no cointegration is naturally rejected for large values of the F -statistic.
Consequently, we use the supremum statistic,

F ∗ = sup
τ∈T

Fτ , (6)

to evaluate the null hypothesis of no cointegration against the alternative of threshold
cointegration with possible structural break. The largest value found in this grid search
determines the most likely breakpoint if the null hypothesis is rejected. The supremum
statistic is evaluated because it puts the most weight on the alternative hypothesis
and corresponds to the model specification with the fastest error correction. Note
that the alternative contains as a special case the standard model of cointegration
under parameter constancy. This means that rejection of the null hypothesis does
not provide evidence concerning the question of whether or not a structural break
occurred. However, it should help practitioners to find the correct model specification
for cointegrated systems with threshold adjustment and possibility of structural change.

3 Asymptotic distribution

In the following, we present the asymptotic distributions of the test statistics as func-
tionals of Brownian motion. The asymptotic theory for SETAR processes with a unit
root was developed in Seo (2008) and the asymptotic theory for MTAR processes with a
unit root was developed in Caner and Hansen (2001). Gregory and Hansen (1996a) pro-

3Critical values for the test statistic depend on the degree of lateral trimming. Imposing a lateral
trimming of 15% ignores potential breakpoints located at the beginning and end of the sample. Sub-
sample analysis should be used to determine if potential structural breaks in this region influence the
test decision.
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vide important results for cointegration test statistics which are functions of the break
fraction parameter τ . These results serve as the building block for our residual-based
tests.

For notational convenience we use ‘⇒’ to signify weak convergence of the associ-
ated probability measures and ‘≡’ to denote equivalence in distribution. Continuous
stochastic processes such as the Brownian motion B(s) on [0,1] are simply written as
B if no confusion will be caused. We also write integrals with respect to the Lebesgue
measure such as

1∫
0
B(s)ds simply as

1∫
0
B.

Let {zt}∞0 be an (m+ 1)-vector integrated process whose data generating process is

zt = zt−1 + ξt, t = 1, 2, . . . (7)

where it is assumed that T−1/2z0
p→ 0 so that z0 can be treated as either fixed or random

and the results do not depend on the initial condition. We partition zt = (yt, x′t)′ into
the scalar variate yt and the m-vector xt. The (m+1)-vector random sequence {ξt}∞1 is
defined on the probability space (X,F , P ) and is assumed to be stationary and ergodic
with zero mean and finite variance. {ξt}∞1 is assumed to be a linear process that satisfies
the following regularity conditions:

Assumption 1. The process {ξt}∞1 is generated as ξt =
∞∑
j=0

Cjνt−j,
∞∑
j=0

j ‖Cj‖ <∞ and

νt ∼ iid(0,Σ), where Σ is a positive definite variance matrix. Further, E|νt|r < ∞ for
some r ≥ 4.

Assumption (1) ensures the validity of the function central limit theorem (FCLT) for
partial sum processes constructed from {ξt} (see, for example, Theorem 3.4 in Phillips
and Solo (1992) and its multivariate extension in Phillips (1995)). Hence, it holds for
s ∈ [0, 1] and as T →∞ that

XT (s) = T−1/2
[Ts]∑
t=1

ξt ⇒ B(s), (8)

where B(s) is (m+ 1)-vector Brownian motion with covariance matrix

Ω = lim
T→∞

T−1E

((
T∑
t=1

ξt

)(
T∑
t=1

ξ′t

))
. (9)
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We partition Ω and B conformably with zt:

B =
By

Bx

 Ω =
ω11 ω′21

ω21 Ω22

 . (10)

We assume Ω22 > 0 and decompose Ω as Ω = L′L, where L is given by

L =
l11 0
l21 L22

 , (11)

with l11 = (ω11 − ω′21Ω−1
22 ω21)1/2, l21 = Ω−1/2

22 ω21, and L22 = Ω1/2
22 . Further, we define

W (s) to be (m+ 1)-vector standard Brownian motion and from Lemma 2.2 of Phillips
and Ouliaris (1990) it follows that B ≡ L′W .

Residual-based cointegration tests seek to test the null hypothesis of no cointegra-
tion using unit root tests applied to the residuals of the cointegrating regression. Hence,
we estimate the cointegrating regression according to one of the structural break models
(3) using least squares and apply the SETAR model (4) to the residuals êtτ given that
the threshold parameter λ is known, i.e. a fixed value. The cointegration residual series
êtτ follows a stochastic trend under the null hypothesis and has no stable distribution.
Hence, the exact threshold value is negligible asymptotically. In case of finite samples,
we still have to specify threshold values that ensure a sufficiently large number of ob-
servations in each regime. Otherwise, we cannot guarantee that both regime-dependent
coefficients of the SETAR model are accurately estimated. A guideline for practitioners
is to verify that at least 15% of observations are contained in each regime for all τ ∈ T .

If we use the MTAR specification in (5) instead, we observe that the threshold
parameter λ∗ has different properties. The threshold variable ∆êtτ has a stationary
distribution under the null hypothesis and the alternative. Hence, the empirical cdf of
∆êtτ consistently estimates the cdf of its asymptotic counterpart under both hypothe-
ses. It follows, that any given threshold value corresponds to a probability of ∆êtτ
or its asymptotic counterpart being greater than the threshold. Practitioners should
either verify that at least 15% of observations are contained in each regime for all
τ ∈ T or should alternatively specify the probability u ∈ [0.15, 0.85] of the asymptotic
counterpart to ∆êtτ being greater than a threshold λ∗ directly.

We assume the lag order K in the auxiliary regression to be large enough to capture
the correlation structure of the cointegration residuals. Similar to Said and Dickey
(1984), we approximate the infinite order process εtτ by a TAR model with finite lag
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order εtτK . Since εtτ might have a nonzero MA component, it is necessary to increase
K with the sample size. In practice, we can use order selection rules such as AIC, BIC
or a general-to-specific pretesting procedure to determine the lag truncation parameter.
We follow Chang and Park (2002) and state:

Assumption 2. K increases with T in such a way that K = o(T 1/2).

The following theorem presents the asymptotic distributions of the supF test statis-
tic for model specifications C, C/T and C/S and SETAR adjustment:

Theorem 1. If {zt}∞0 is generated by (7), Assumptions (1) and (2) hold and τ belongs
to a compact subset of (0, 1), then as T →∞

F ∗SETAR ⇒
1
2 sup
τ∈T



(
1∫
0
1{Qκτ ≥ 0}QκτdQκτ

)2

κ′τDτκτ
1∫
0
1{Qκτ ≥ 0}Q2

κτ

+

(
1∫
0
1{Qκτ < 0}QκτdQκτ

)2

κ′τDτκτ
1∫
0
1{Qκτ < 0}Q2

κτ


where

Qκτ = Wy −

 1∫
0

WxτW
′
xτ

−1 1∫
0

WyW
′
xτ

Wxτ

κτ =

1,−
 1∫

0

WxτW
′
xτ

−1 1∫
0

WyW
′
xτ




Under the alternative of cointegration with two-regime SETAR adjustment, F ∗SETAR →
∞ as T →∞. Qκτ depends on the model:
a) If the residuals are obtained from least squares estimation of model C, then

Wxτ = (W ′
x, 1, ϕτ )′

Dτ =
Im+1 0

0 0

 .
b) If the residuals are obtained from least squares estimation of model C/T , then

Wxτ = (W ′
x, 1, s, ϕτ )′
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Dτ =
Im+1 0

0 0

 .
c) If the residuals are obtained from least squares estimation of model C/S, then

Wxτ = (W ′
x, 1,W ′

xϕτ , ϕτ )′

Dτ =



1 0 0 0 0
0 Im 0 (1− τ)Im 0
0 0 0 0 0
0 (1− τ)Im 0 (1− τ)Im 0
0 0 0 0 0


.

A formal proof of Theorem 1 is provided in the Appendix.

Remark 1. The alternative of cointegration encompasses models with linear adjust-
ment as a special case. Further, it can be inferred from the second part of the proof
that the null hypothesis of no cointegration can be rejected for cases with and without
structural break.

While the threshold variable in the SETAR model is nonstationary under the null
hypothesis, the threshold variable in the MTAR model is stationary under both the
null hypothesis and alternative. Hence, we have to treat the MTAR case separately and
derive the asymptotic distribution of the supF test statistic for cointegration models
with MTAR adjustment in Theorem 2.

Theorem 2. If {zt}∞0 is generated by (7), Assumptions (1) and (2) hold and τ belongs
to a compact subset of (0, 1), then as T →∞

F ∗MTAR ⇒
1
2 sup
τ∈T



(
1∫
0
Qκτ (s)dW (s, u)

)2

u
1∫
0
Q2
κτ (s)ds

+

(
1∫
0
Qκτ (s) (dW (s, 1)− dW (s, u))

)2

(1− u)
1∫
0
Q2
κτ (s)ds


where

Qκτ = Wy −

 1∫
0

WxτW
′
xτ

−1 1∫
0

WyW
′
xτ

Wxτ

Under the alternative of cointegration with two-regime MTAR adjustment, F ∗MTAR →∞
as T →∞. Qκτ depends on the model:
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a) If the residuals are obtained from least squares estimation of model C, then

Wxτ = (W ′
x, 1, ϕτ )′

b) If the residuals are obtained from least squares estimation of model C/T , then

Wxτ = (W ′
x, 1, s, ϕτ )′

c) If the residuals are obtained from least squares estimation of model C/S, then

Wxτ = (W ′
x, 1,W ′

xϕτ , ϕτ )′

A formal proof of Theorem 2 is provided in the Appendix.

Remark 2. Enders and Siklos (2001) do not provide an asymptotic theory for their
tests. The theorems given here are easily adapted to provide the asymptotic distri-
butions for models without structural breaks using Wxτ = (W ′

x, 1)′. The asymptotic
distribution of their F -statistic using fixed threshold values and a SETAR model is
given as a special case of Theorem 1 of this paper and as a special case of Theorem 2 in
Maki and Kitasaka (2015). Theorem 2 is new in the multivariate context. It shows that
the cointegration test using MTAR adjustment in Enders and Siklos (2001) depends on
the nuisance parameter u. However, critical values obtained for different specifications
of u are very similar for the standard model without structural breaks.

4 Simulation results

Critical values and finite sample properties of the supF tests are examined by Monte
Carlo experiments. In the absence of a structural break, we use a DGP according to
Engle and Granger (1987) and Banerjee et al. (1986) which is given for one regressor
(m = 1) in the form of

yt = µ+ αx1,t + et ∆et = ρet−1 + ϑt ϑt ∼ N(0, 1)
yt = x1,t + ηt ηt = ηt−1 + ωt ωt ∼ N(0, 1),

(12)

where the parameters of the equilibrium equation are µ = 1 and α = 2. First, the
null hypothesis of no cointegration is simulated with ρ = 0. This enables us to obtain
quantiles of the supF distribution for different sample sizes. The BIC is used to deter-
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mine the lag truncation parameter K. Critical values are computed for 10, 000 draws
for each sample size. The results are reported in Table 1, Table 2 and Table 3.

The power of the supF test under structural change is evaluated with a DGP de-
signed in line with Gregory and Hansen (1996a). A slight modification was, however,
necessary to allow for a linear trend in the long-run equilibrium equation and asym-
metric adjustment to the long-run equilibrium. The following DGP is employed for a
bivariate cointegrated system with SETAR adjustment,

yt = µt + δt+ αtx1,t + et ∆et =

ρ1et−1 + ϑt if et−1 ≥ 0

ρ2et−1 + ϑt if et−1 < 0
ϑt ∼ N(0, 1)

yt = x1,t + ηt ηt = ηt−1 + ωt ωt ∼ N(0, 1)

 µt = µ1, αt = α1, t ≤ [Tτ ]
µt = µ2, αt = α2, t > [Tτ ]

 ,
(13)

in which symmetric adjustment is nested as ρ1 = ρ2. In the case of MTAR adjustment,
the speed of adjustment depends on whether the previous period’s change was greater
than the median of ∆et. Thus, we investigate the power for u = 0.5. A change in
the intercept is modelled by means of an increase from µ1 = 1 to µ2 = 4 at the
breakpoint, whereas a change in the slope is modelled as an increase from α1 = 2 to α2 =
4. The simulation set-up used for cointegrated systems with symmetric adjustment
directly follows Gregory and Hansen (1996a) so that the results for the supF test can
be compared with the results for the GH test.

Table 4 reports the rejection rates under cointegration with symmetric adjustment
and structural break in either the intercept or slope. The power of the tests is in-
vestigated by generating 2,500 draws for every specification. We find that the supF
tests have generally higher rejection rates than either the Engle-Granger test using the
ADF test statistic or threshold cointegration tests without breakpoint estimation. The
simulation reveals that the supF test with SETAR adjustment has comparable power
properties to the GH test. The MTAR specification of the supF test has slightly lower
power against the alternative than the GH test. The Enders-Siklos test with SETAR
adjustment seems to be rather robust to a break in the intercept but suffers from a
drastic reduction in power if a break in the slope is considered. The supF tests appear
to have sufficient power at sample sizes above T = 100 and moderate adjustment rate
ρ = −0.5. As expected, model C outperforms models C/T and C/S if a break in the
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intercept is considered, while model C/S performs best if the slope changes at one point
in the sample.

The simulation results under symmetric adjustment can also be used to analyze the
estimation accuracy of the pre-specified breakpoint in the DGP. The timing of the break
is varied and takes place either at the beginning (τ = 0.25), the middle (τ = 0.5) or near
the end of the series (τ = 0.75). The results are summarized in Table 5 and reveal that
breakpoint estimates are in large parts very accurate. In general, it seems that breaks
at the beginning of the sample are most difficult to detect and the supF tests often
indicate a later breakpoint. Breaks in the intercept and the slope are estimated with
equal accuracy as long as the correct structural break model is applied. The SETAR
model seems to produce slightly more accurate breakpoint estimates than the MTAR
model.

The upper panels of Table 6 and Table 7 display the rejection rates under structural
stability and asymmetric adjustment. For each combination of autoregressive coeffi-
cients, we generate series with sample size T = 100. If the series are generated under
asymmetric adjustment with a stable cointegrating vector, we find that the supF tests
operate with less power than the threshold cointegration tests by Enders and Siklos
(2001). This is not surprising, considering that wrongly specified breaks in form of
additional dummy variables in the equilibrium equation leads to noisy coefficient esti-
mates and thus reduces the test’s power against the null hypothesis. Accordingly, the
most parsimonious model C performs best among the three structural break models.

Finally, the behaviour of the supF test is evaluated under parameter instability
and asymmetric adjustment. For that matter, we draw from the DGP in (13). We
consider SETAR adjustment in Table 6 and MTAR adjustment in Table 7, respectively.4

In the second panel, we model a break in the intercept. The supF tests have poor
power properties and are outperformed by the Enders-Siklos test in each parameter
combination. The loss in power of the original threshold cointegration test due to a
break in the intercept does not justify the additional parameter estimation and grid
search of model C. Models C/T and C/S involve an additional parameter and, as
expected, have lower rejection rates. In the third panel, we add a linear trend (δ = 1)
to the long-run equilibrium equation. Here, only model C/T is correctly specified
and has the highest rejection rates for moderate adjustment. The remaining model
candidates do not seem to have power against the null hypothesis under this form of

4Please note that different forms of misspecification are evaluated in these simulations. In each
panel, only one model is correctly specified while the remaining three are either over- or underspecified.
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misspecification. In the last panel, we display the results for a simultaneous break in
the intercept and the slope and find the picture to be quite different. All structural
break models have more power against the null hypothesis than the Enders-Siklos test.
As expected, the power of the correctly specified model C/S exceeds all other structural
change models for each parameter combination. In general, we find a break in the slope
to have a more substantial impact on the power function than a break in the intercept.

Additionally, we evaluate the GH test under asymmetric adjustment and structural
instability. The results are reported in Table 8 and Table 9. We find that its power is
slightly lower than the supF tests’ power if adjustment is slow and asymmetric. Since
we do not know if this situation is present in a given empirical application, we should
consider the supF test instead of the GH test whenever considerable asymmetries are
suspected.

Naturally, all results in this section depend strongly on the particular model spec-
ification, the break magnitudes and the signal-to-noise ratio. In practice, we do not
know the true model and have to decide between available structural change models.
Practitioners should ideally argue for a structural change model based on economic rea-
soning (asking, for example, what type of event could have occurred during the sample
period). However, our simulations clearly show that underspecified models do not have
power against the null hypothesis, particularly if the variables are trending or in the
presence of structural breaks in the slope coefficient.

5 Empirical application

In this section, we apply the supF test methodology to study the ‘rockets and feathers’
hypothesis5 in the US gasoline market. The ‘rockets and feathers’ hypothesis describes
the adjustment behaviour of prices faced with input price shocks. More precisely, the
hypothesis states that prices adjust faster to input price increases than to input price
decreases. In the terms of Bacon (1991)’s seminal paper, the price goes up like a rocket,
but falls down like a feather. While early studies on the matter (Bacon (1991), Manning
(1991), Borenstein et al. (1997)) focused on the short-run asymmetry in the pricing
process, the focus quickly shifted to the economically meaningful long-run asymmetry
estimated by asymmetric error correction models (Bachmeier and Griffin (2002)).

5The name originates from the Bacon (1991) paper entitled: ‘Rockets and feathers: the asymmetric
speed of adjustment of UK retail gasoline prices to cost changes’
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For our empirical illustration, we examine the fuel price transmission at two points
of the production chain. First, we analyze the speed of adjustment for deviations from
the long-run relationship between crude oil prices and gasoline spot prices (first stage).
Second, we analyze the pass-through from gasoline spot prices to retail prices (second
stage). Finally, the direct link between crude oil prices and retail prices is analyzed
(single stage). Naturally, we expect the speed of adjustment at the first and second stage
to be faster than at the single stage transmission. Long-run asymmetry in the sense of
the ‘rockets and feathers’ hypothesis is found if negative deviations from the long-run
equilibrium are adjusted faster than positive deviations, i.e. ρ1 = ρ− < ρ+ = ρ2. If the
threshold value is specified to be λ = 0 in the SETAR model, the cointegrated system’s
adjustment depends on whether input prices or output price are too high relative to the
long-run equilibrium. Alternatively, we use the MTAR model to investigate whether a
shock having momentum greater than or equal to its median is adjusted faster than a
shock with less momentum. This specification of the threshold variable guarantees an
equal amount of observations in each regime.

Our sample reaches from January 2006 to December 2013 to include the collapse
of commodity prices in 2009 and their subsequent recovery. We observe prices at a
monthly frequency yielding a total of 96 observations. The West Texas Intermediate
prices (pct), regular gasoline spot prices (pst) and regular gasoline retail prices (pgt ) are all
obtained from the U.S. Energy Information Administration (EIA). Figure 1 depicts the
trajectory of the prices and shows volatile behaviour of prices for petroleum products
during the Global Financial Crisis. Although all times series in Figure 1 seem to be
affected by global events, it does not immediately follow that the long-run relationship
between them changes. However, from our simulation study, we know that an existing
instability of the cointegrating vector can severely decrease the power of threshold
cointegration tests.

First, we estimate a threshold cointegration model according to Enders and Siklos
(2001). We specify the long-run equilibrium equations

(I) pst = µ+ α pct + et

(II) pgt = µ+ α pst + et

(S) pgt = µ+ α pct + et

(14)

where the (I), (II), (S) denote first stage, second stage and single stage, respectively.
The coefficients of the cointegrating vector are estimated using least squares and a
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threshold model is applied to the residuals. All adjustment coefficients have the correct
sign allowing the test for cointegration and asymmetric adjustment to be conducted.
The results for the SETAR model with λ = 0 are reported in panel (a) of Table 10
and reveal significant asymmetry in the adjustment process only in the second stage.
The results for the MTAR model with u = 0.5 are reported in panel (b) of Table 10.6

Here, we also find significant asymmetries in the transmission from spot gasoline to
retail gasoline prices. Surprisingly, we do not find sufficient evidence for a long-run
relationship between crude oil prices and gasoline spot prices. In contrast, retail gasoline
prices and crude oil prices seem to maintain a long-run equilibrium which is a less likely
result from an economic perspective than the existence of a crude/spot relationship.

Second, we estimate the long-run equilibrium equations again using the C/S spec-
ification since this specification of the supF tests shows the most robust performance
in the simulation study if the variables do not have a linear time trend. It is the
only specification that allows for change in the slope coefficient at one point during
the sample period and is best-suited for modelling unspecific regime shift events. The
results are reported in panel (b) and panel (d) of Table 10. The null hypothesis of
no cointegration can now be rejected at all stages along the gasoline value-chain. The
breakpoint is located either at the peak crude oil prices during the Global Financial
Crisis or after the prices had begun to recover in 2011. Closer inspection of the time
series reveals that the spread between crude oil prices and spot gasoline prices widened
sharply around 2011. This period coincides with a substantial transformation of the
US refining industry (Kilian, 2016). More specifically, the WTI nexus in Cushing had
reached capacity due to a surplus of oil coming from North American shale oil fields.
This meant that WTI had to be stockpiled and was trading at a discount compared to
other crudes like Brent. The bottleneck in the transportation infrastructure seems to
have affected the relationship between WTI prices and spot gasoline prices. While the
timing of a potential breakpoint was assumed to be unknown, we can investigate the
effects of the structural break ex post. Figure 2 displays the estimated regression line
through a scatterplot for each cointegration pair.7 We observe that the regression lines
for the first stage changes considerably when we incorporate observations after January

6Different choices of u in the interval [0.3, 0.7] lead to the same test results. Since the sample size
is rather small, choices of u outside of this interval do not guarantee sufficient observations in each
regime.

7The estimated breakpoints are taken from panel (b) of Table 10 (SETAR specification), but since
the estimated breakpoints in panel (d) (MTAR specification) are almost identical, the results hold for
both specifications.

17



2011. Specifically, the post-break observations are clustered in one spot. In contrast,
the estimated breakpoint in the second stage does not seem to affect the regression
line. Here, the post-break observations are evenly distributed across the regression line.
The effects on the single stage regression line are similar to the ones obtained for the
first stage although less pronounced. Turning to the tests for asymmetry, we do not
find statistical evidence for asymmetric adjustment processes in the first stage. The
asymmetry results for the second stage and single stage remain unchanged.

6 Conclusion

This paper proposed an extension to the GH test to include SETAR and MTAR ad-
justment. Thereby, we constructed threshold cointegration tests which endogenously
determine the location of a structural break in the cointegrating vector and test the
null of no cointegration. We derived the limiting distribution for the structural break
models C, C/T and C/S and tabulated their critical values which were obtained by
Monte Carlo simulations. Analysis of the finite sample properties under the alterna-
tive of linear and threshold cointegration revealed that the tests exhibit considerable
power gains over the conventional Enders-Siklos tests if a break in the slope coefficient
is present. We applied the supF tests to US gasoline market data and found evidence
for a long-run relationship between prices along the value-chain after we accounted for
structural breaks. The results for the SETAR and MTAR models provided evidence
for asymmetric price transmission from spot gasoline to retail gasoline.

It has to be noted that the performance of the supF test naturally depends on
the type of structural break and whether the correct model specification has been
chosen. Practitioners need to have a strong prior regarding the true DGP and should
examine the robustness of their results across different model specifications. Our test,
analogously to Gregory and Hansen (1996a) and its extension in Hatemi-J (2008),
assumes that there are no level shifts and broken trends in the individual time series
under both the null and alternative hypotheses. Hence, the statistical properties of our
test might be distorted in these situations. Harris et al. (2016) suggest to pre-test for
the presence of a trend break.

Our framework could be extended in various ways. First, our list of structural break
models could be expanded to include multiple structural breaks and alternative struc-
tural break models. For example, we could consider a break in the linear trend similar
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to Gregory and Hansen (1996b) or the possibility of encountering two structural breaks
during the sampling period as proposed by Hatemi-J (2008). However, the compu-
tational costs of higher dimensional grid searches might restrict these considerations.
Moreover, the restriction of a fixed threshold value needs to be relaxed to allow for
empirical applications where the threshold value is unknown. Since these extensions
are beyond the scope of this paper, we leave them for future research.
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Appendix

Proof of Theorem 1. The asymptotic distribution is derived by adapting the results
of Gregory and Hansen (1992) to match the F -statistic process involving a threshold
indicator function using results in Maki and Kitasaka (2015). However, Maki and
Kitasaka (2015) use a different definition of the threshold parameter space in their
SETAR model. The threshold parameter in our model is fixed, i.e. belongs to a trivial
compact subset of R whereas the parameter space in Maki and Kitasaka (2015) is
data dependent (see the discussion on threshold parameter space in Section 2.2 of their
paper). Indicator functions with threshold parameters defined on compact sets are
treated in Seo (2008). The proof only refers to model C/S while the results for the
remaining models can be deduced from the results obtained for this model. Hence, we
consider the cointegrating regression,

yt = α̂′1xt + µ̂1 + α̂′2xtϕt,τ + µ̂2ϕt,τ + êtτ , (15)

where êtτ is an integrated process under the null hypothesis of no cointegration and
zt = (yt, x′t)′ is generated according to (7).

Define the (2m + 3)-vector Xtτ = (yt, xt′, 1, xtϕt,τ ′, ϕt,τ )′ and partition Xtτ =
(X1tτ , X2tτ

′)′ where X1tτ = yt and X2tτ contains all regressors of (15). De-
fine δT = diag(T−1/2Im+1, 1, T−1/2Im, 1), ϕτ (s) = 1{s > τ} and Xτ (s) =
(B(s)′, 1, Bx(s)ϕτ (s)′, ϕτ (s))′. Partition δT = (δ1T , δ2T ) in conformity to Xtτ .

Next, we partition the (m + 1)-vector standard Brownian Motion W as W =
(Wy,W

′
x)′ where

Wy = l−1
11

(
By − ω′21Ω−1

22 Bx

)
Wx = Ω−1/2

22 Bx. (16)

Furthermore, we define
Wxτ = (Wx

′, 1,Wxϕτ
′, ϕτ )′ (17)

and Wτ = (Wy,Wxτ
′)′.

First, we consider the least squares estimator of the parameters of the cointegrat-
ing regression. It is shown in Gregory and Hansen (1992) using the FCLT and the
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continuous mapping theorem (CMT, see Billingsley (1999), Theorem 2.7) that

T−1δT
T∑
t=1

XtτXtτ
′δT ⇒

1∫
0

XτXτ
′, (18)

where the weak convergence is with respect to the uniform metric over τ ∈ T . In
the remainder of the proof, we refer to weak convergence results involving the break
fraction parameter τ as holding uniformly over τ (see also Arai and Kurozumi (2007)
for a similar application).

We define the vector θ̂τ = (α̂′1, µ̂1, α̂
′
2, µ̂2) as the least squares estimator of (15) for

each τ . It follows from (18) and the CMT that

T−1/2δ−1
2T θ̂τ =

(
T−1δ2T

T∑
t=1

X2tτX2tτ
′δ2T

)−1 (
T−1δ2T

T∑
t=1

X2tτX1tτδ1T

)

⇒

 1∫
0

X2τX2τ
′

−1 1∫
0

X2τX1τ

 . (19)

When we set η̂τ = T−1/2δ−1
T (1,−θ̂′τ )′ = (1,−δ−1

2T θ̂
′
τ )′, it follows that

η̂τ ⇒

1,−
 1∫

0

X1τX2τ
′

 1∫
0

X2τX2τ
′

−1
′

= ητ . (20)

Next, we state some useful convergence results for the residuals of the cointegrating
regression. We define the residual series êtτ = yt − α̂′1xt − µ̂1 − α̂′2xtϕt,τ − µ̂2ϕt,τ which
is dependent on τ . Note that êtτ can be expressed as

êtτ = T 1/2η̂′τδTXtτ . (21)

Using Lemma 2.2 of Phillips and Ouliaris (1990) yields

T−1/2êtτ ⇒ η′τXτ = l11κ
′
τWτ = l11Qκτ , (22)
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where

κτ =

1,−
 1∫

0

WyW
′
xτ

 1∫
0

WxτW
′
xτ

−1
′

Lητ = l11κτ (23)

Qκτ = Wy −

 1∫
0

WyW
′
xτ

 1∫
0

WxτW
′
xτ

−1

Wxτ .

The first-differenced residuals are expressed as ∆êtτ = T 1/2η̂′τδT∆Xtτ , where

∆Xtτ = ∆(yt, xt′, 1, xtϕt,τ ′, ϕt,τ )′

= (ξ1t, ξ2t
′, 0, xt−1∆ϕt,τ ′ + ∆xtϕt,τ ′,∆ϕt,τ )′ (24)

= (ξ1t, ξ2t
′, 0, xt−1∆ϕt,τ + ξ2tϕt,τ

′,∆ϕt,τ )′

and

∆ϕt,τ =

 1 if t = [Tτ ]

0 if t 6= [Tτ ]
. (25)

The asymptotic counterpart to ∆ϕt,τ is the differential dϕτ (s), a Dirac function con-
centrating the unit mass at the point s = τ so that

b∫
a

fdϕτ = lim
z↑τ

f(z), a < τ < b,

for all functions with left-limits. Then, we can define the differential dXτ by

dXτ (s) = (dB(s)′, 0, Bx(s)′dϕτ (s) + dBx(s)′ϕτ (s), dϕτ (s))′. (26)

Under Assumption (1), ξt is a stationary linear vector process and consequently, the
scalar process T 1/2η̂′τδT∆Xtτ ⇒ T 1/2η′τδT∆Xtτ is also a stationary linear process with
an intervention outlier at t = [Tτ ]. Moreover, under Assumption (2) the lag truncation
parameter K → ∞ for T → ∞. This means that the error of approximating εtτ by
a finite AR process becomes small as K grows large. Following Phillips and Ouliaris
(1990) we write the infinite order AR representation of the SETAR error term process as
εtτ =

∞∑
j=0

Dj(T 1/2δT∆Xt−jτ )′ητ = D(L)(T 1/2δT∆Xtτ )′ητ . The lag structure is chosen in

a way that εtτ is an orthogonal (0, σ2(η, τ)) sequence with long-run variance σ2(η, τ) =
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D(1)2η′τΩτητ . From Lemma 2.1 of Phillips and Ouliaris (1990), it follows that

T−1/2
[Ts]∑
t=1

εtτK = D(L)η′τ

T−1/2
[Ts]∑
t=1

T 1/2δT∆Xtτ

+ op(1)⇒ D(1)η′τXτ (s), (27)

where D(1) =
∞∑
j=0

Dj.
Now, we consider the auxiliary regression. We apply the SETAR model to the

residuals according to (4) and compute the test statistics Fτ . Note that the esti-
mated adjustment coefficients might be correlated with the estimated coefficients of
the additional lagged differences. Therefore, we write the least squares estimator of
ρ = (ρ1, ρ2)′ in the breakpoint specific notation under the null hypothesis ρ1 = ρ2 = 0
as ρ̂ = (U ′τQKUτ )−1U ′τQKετ , where

Uτ =


ê0τ1{ê0τ ≥ λ} ê0τ1{ê0τ < λ}
ê1τ1{ê1τ ≥ λ} ê1τ1{ê1τ < λ}

... ...
êT−1τ1{êT−1τ ≥ λ} êT−1τ1{êT−1τ < λ}

 , (28)

ετ = (ε1τ , ε2τ , . . . , εTτ )′ and QK = I −MK(M ′
KMK)−1M ′

K is the projection matrix onto
the space orthogonal to the regressors MK = (∆êt−1τ , . . . ,∆êt−Kτ ).

We partition the matrix Uτ as Uτ = (U1τ , U2τ ), then the t ratio of ρ̂1 can be expressed
as

t1 = ρ̂1

se(ρ̂1) = ρ̂1

(σ̂2(U ′1τQKU1τ )−1)1/2 = U ′1τQKετ
σ̂(U ′1τQKU1τ )1/2 (29)

and similarly the t ratio of ρ̂2 can be expressed as

t2 = U ′2τQKετ
σ̂(U ′2τQKU2τ )1/2 . (30)

In the remainder of the proof, we focus on t1. Scaling the t ratio appropriately yields
the numerator

T−1U ′1τQKετ = T−1U ′1τετ − T−1/2 · T−1U ′1τMK(T−1M ′
KMK)−1T−1/2M ′

Kετ

= T−1U ′1τετ + op(1) = NT (λ, τ) + op(1) (31)
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and the term

T−2U ′1τQKU1τ = T−2U ′1τU1τ − T−1 · T−1U ′1τMK(T−1M ′
KMK)−1T−1M ′

KU1τ

= T−2U ′1τU1τ + op(1) = DT (λ, τ) + op(1). (32)

Finally, we need convergence results for NT (λ, τ), DT (λ, τ) and σ̂2. Since x 7→
x1{x ≥ λ} is a regular function, it follows from (22) and Theorem 3.1 of Park and
Phillips (2001) that

T−1/2êt−1τ1{êt−1τ ≥ λ} = η̂′τδTXt−1τ1{T 1/2η̂′τδTXt−1τ ≥ λ}

= η̂′τδTXt−1τ1{η̂′τδTXt−1τ ≥ T−1/2λ} (33)

⇒ η′τXτ1{η′τXτ ≥ 0} = l11Qκτ1{Qκτ ≥ 0}.

Thus, Theorem 2.2 of Kurtz and Protter (1991) combined with results (27) and (33)
yields

NT (λ, τ) = T−1
T∑
t=1

1{êt−1τ ≥ λ}êt−1τ εtτ

= η̂′τδT
T∑
t=1

1{δT η̂′τXt−1τ ≥ T−1/2λ}Xt−1τD(L)(∆Xtτ )′δTητ

⇒ D(1)η′τ
1∫

0

1{η′τXτ ≥ 0}XτdX
′
τητ (34)

= D(1)l211

1∫
0

1{Qκτ ≥ 0}QκτdQκτ ,

while (27), (33) and the CMT yield

DT (λ, τ) = T−2
T∑
t=1

1{êt−1τ ≥ λ}ê2
t−1τ

= η̂′τδTT
−1

T∑
t=1

1{δT η̂′τXt−1τ ≥ T−1/2λ}Xt−1τXt−1τ
′δT η̂τ

⇒ η′τ

1∫
0

1{η′τXτ ≥ 0}XτX
′
τητ (35)

= l211

1∫
0

1{Qκτ ≥ 0}Q2
κτ .
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For the variance estimate, σ̂2, we note that ρ̂1 = Op(T−1) and ρ̂2 = Op(T−1), but
(γ̂j − γj) = Op(T−1/2). Using Lemma 2.2 of Phillips and Ouliaris (1990) yields

σ̂2 = T−1
T∑
t=1

∆êtτ − ρ̂1êt−1τ1{êt−1τ ≥ λ} − ρ̂2êt−1τ1{êt−1τ < λ} −
K∑
j=1

γ̂j∆êt−jτ

2

= T−1
T∑
t=1

ε2tτ + op(1)⇒ D(1)2η′τΩτητ = D(1)2l211κ
′
τDτκτ , (36)

where the long-run covariance matrix is given by

Ωτ =



ω11 ω′21 0 (1− τ)ω′21 0
ω21 Ω22 0 (1− τ)Ω22 0
0 0 0 0 0

(1− τ)ω21 (1− τ)Ω22 0 (1− τ)Ω22 0
0 0 0 0 0


(37)

and

Dτ =



1 0 0 0 0
0 Im 0 (1− τ)Im 0
0 0 0 0 0
0 (1− τ)Im 0 (1− τ)Im 0
0 0 0 0 0


. (38)

Similar results can be obtained for t2 so that the results (34), (35), (36) combine with
the CMT to proof the theorem under the null hypothesis.
Under the alternative, the system is cointegrated so that we have η̂τ

p→ ητ and

η̂τ = ητ +Op(T−1) (39)

from Phillips and Durlauf (1986), Theorem 4.1. Thus, for the residual series it holds
that

êtτ = η̂′τzt = η′τzt +Op(T−1/2) = qtητ +Op(T−1/2). (40)

By assumption a stationary SETAR representation of qtητ exists and is given by

qtητ = a11qt−1ητ1{qt−1ητ ≥ λ}+ a12qt−1ητ1{qt−1ητ < λ}+
∞∑
j=2

ajqt−jητ + ε∗tητ , (41)
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where ε∗tητ is an orthogonal (0, σε∗ητ ) sequence. This can alternatively be written as

∆qtητ = ψ11qt−1ητ1{qt−1ητ ≥ λ}+ ψ12qt−1ητ1{qt−1ητ < λ}+
∞∑
j=2

ψj∆qt−jητ + ε∗tητ . (42)

If we consider the t ratio of ρ̂1 and use the expression

t1 = 1
σ̂

(
ρ̂1 (U ′1τQKU1τ )1/2

)
, (43)

we find that ρ̂1
p→ ψ11 6= 0 and σ̂2 p→ σ2

ε∗ητ
. Further, we observe that

U ′1τQKU1τ = U ′1τU1τ − U ′1τMK(M ′
KMK)−1M ′

KU1τ = Op(T ) (44)

which yields t1 = Op(T 1/2) and similarly t2 = Op(T 1/2). Hence, we immediately see
that F ∗SETAR →∞ as T →∞. �

Proof of Theorem 2. The proof is structured similarly to the proof of Theorem 1.
Using the results for the cointegrating regression, we write the AR representation of the
MTAR error term process as εtτ =

∞∑
j=0

aj(T−1/2δT∆Xt−jτ )′ητ = a(L)(T−1/2δT∆Xt−jτ )′ητ
and have εtτ as an orthogonal (0, σ2(η, τ)) sequence with σ2(η, τ) = a(1)2η′τΩτητ . From
Lemma 2.1 of Phillips and Ouliaris (1990), it follows that

T−1/2
[Ts]∑
t=1

εtτK = a(L)η′τ

T−1/2
[Ts]∑
t=1

T 1/2δT∆Xtτ

+ op(1)⇒ a(1)η′τXτ , (45)

where a(1) =
∞∑
j=0

aj.

Now, we apply the MTAR model to the residuals according to (5) and compute the
test statistics Fτ . The t ratio of ρ̂1 is written as

t1 = U ′1τQKετ
σ̂(U ′1τQKU1τ )1/2 (46)

and the t ratio of ρ̂2 is written as

t2 = U ′2τQKετ
σ̂(U ′2τQKU2τ )1/2 , (47)
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where

Uτ = (U1τ , U2τ ) =


ê0τ1{∆ê0τ ≥ λ∗} ê0τ1{∆ê0τ < λ∗}
ê1τ1{∆ê1τ ≥ λ∗} ê1τ1{∆ê1τ < λ∗}

... ...
êT−1τ1{∆êT−1τ ≥ λ∗} êT−1τ1{∆êT−1τ < λ∗}

 . (48)

Finally, we need convergence results for NT (λ∗, τ), DT (λ∗, τ) and σ̂2. The main
difference between the asymptotic distribution for the SETAR and the MTAR models
lies in the fact that the indicator variable ∆êtτ has a stationary distribution under the
null hypothesis and the alternative. Further, the MTAR decomposition of êt−1τ is not
regular and Theorem 3.1 of Park and Phillips (2001) cannot be used. However, from
Theorem 1 in Caner and Hansen (2001) it follows that

T−1/2
[Ts]∑
t=1

1{∆êt−1τ ≥ λ∗}εtτ = T−1/2
[Ts]∑
t=1

1{G (∆êt−1τ ) ≥ G (λ∗)}εtτ

= T−1/2
[Ts]∑
t=1

1{Ut ≥ G (λ∗)}εtτ

⇒ Qκτ (s, u) = σ(η, τ)W (s, u) (49)

= a(1)l11(κ′τDτκτ )1/2W (s, u),

where G(·) is the marginal distribution of ∆êt−1τ so that G(∆êt−1τ ) = Ut ∼ U [0, 1]
and G(λ∗) = u. The standard two-parameter Brownian motion W (s, u) is defined on
(s, u) ∈ [0, 1]2. Using Theorem 2.2 of Kurtz and Protter (1991) and (49) yields

NT (λ∗, τ) = T−1
T∑
t=1

1{∆êt−1τ ≥ λ∗}êt−1τ εtτ

= η̂′τδT
T∑
t=1

1{G (∆êt−1τ ) ≥ G (λ∗)}Xt−1τεtτ

⇒ a(1)l11(κ′τDτκτ )1/2η′τ

1∫
0

Xτ (s)dW (s, u) (50)

= a(1)l211(κ′τDτκτ )1/2
1∫

0

Qκτ (s)dW (s, u)
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and Theorem 3 of Caner and Hansen (2001) yields

DT (λ∗, τ) = T−2
T∑
t=1

1{∆êt−1τ ≥ λ∗}ê2
t−1τ

= η̂′τδTT
−1

T∑
t=1

1{G (∆êt−1τ ) ≥ G (λ∗)}Xt−1τXt−1τ
′δT η̂τ

⇒ uη′τ

1∫
0

Xτ (s)X ′τ (s)dsητ (51)

= ul211

1∫
0

Q2
κτ (s)ds.

For the variance estimate, σ̂2, Lemma 2.2 of Phillips and Ouliaris (1990) yields

σ̂2 = T−1
T∑
t=1

ε2tτ + op(1)

⇒ a(1)2l211κ
′
τDτκτ . (52)

The results (50), (51), (52) combine with the CMT to proof

t1 ⇒

1∫
0
Qκτ (s)dW (s, u)(
u

1∫
0
Q2
κτ (s)ds

)1/2 . (53)

Analogously, we can show that

t2 ⇒

1∫
0
Qκτ (s) (dW (s, 1)− dW (s, u))(

(1− u)
1∫
0
Q2
κτ (s)ds

)1/2 (54)

holds. Finally, we observe that taking the supremum over all τ ∈ T is a continuous
transformation so that we can use the CMT to proof the theorem under the null hypoth-
esis. The proof of the theorem under the alternative is a straightforward adaptation of
the results given in the proof of Theorem 1. �
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Figure 1: WTI crude oil prices, spot gasoline prices and retail gasoline prices from January
2006 to December 2013
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Figure 2: Ex post analysis of structural breaks in the long-run equilibrium equation. The
left, middle and right scatterplots display the first stage, second stage and single stage results,
respectively. The solid line marks the regression line for the full sample and the dashed line
marks the regression line for all observations before the estimated breakpoint. All observations
after the breakpoint are marked with black dots.
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Table 1: Approximate critical values of F ∗SETAR

C C/T C/S

T 90% 95% 99% 90% 95% 99% 90% 95% 99%
m = 1

50 16.01 18.48 24.22 18.80 21.38 27.10 17.52 20.16 25.83
100 12.73 14.66 19.24 15.58 17.75 22.49 14.44 16.68 21.40
250 10.80 12.29 15.70 12.99 14.59 18.16 12.52 14.36 17.82
500 10.13 11.42 14.30 12.11 13.46 16.37 11.76 13.24 16.39
∞ 9.48 10.70 13.45 11.53 12.86 15.74 11.20 12.71 15.69

m = 2
50 17.63 20.14 26.26 19.84 22.42 28.47 20.49 23.47 29.57
100 16.19 18.21 23.21 18.69 20.90 25.94 19.24 21.56 26.54
250 13.33 15.02 18.93 15.50 17.39 21.69 16.47 18.39 23.03
500 12.22 13.68 17.08 14.06 15.63 19.07 15.22 16.85 20.18
∞ 12.18 13.60 16.88 14.22 15.82 19.33 15.30 16.86 20.45

m = 3
50 19.80 22.49 28.40 21.71 24.56 30.57 23.94 27.05 34.08
100 18.20 20.51 25.37 20.40 22.81 28.00 22.87 25.43 30.89
250 15.37 17.16 21.21 17.31 19.24 23.42 19.81 22.00 26.48
500 14.15 15.71 19.11 15.88 17.57 21.14 18.44 20.30 24.11
∞ 14.12 15.65 19.03 16.00 17.66 21.23 18.60 20.44 24.09

m = 4
50 21.19 23.92 29.90 23.22 26.11 32.96 27.33 30.40 37.89
100 20.13 22.56 27.61 22.42 24.80 29.47 25.98 28.49 34.16
250 17.36 19.27 23.87 19.21 21.23 26.12 23.26 25.81 30.78
500 15.77 17.41 20.70 17.41 19.13 22.73 21.46 23.44 27.80
∞ 16.04 17.69 21.28 17.81 19.51 23.12 21.75 23.83 27.95

Note: C, C/T and C/S denote the supF tests using the structural break models in (3). m refers to
the number of columns of the regressor matrix xt. The lag truncation parameter is determined using
the BIC and maximum lag length Kmax = 8. Critical values for different order selection rules are not
reported but can be obtained from the author upon request.
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Table 2: Approximate critical values of F ∗MTAR

C C/T C/S

u 90% 95% 99% 90% 95% 99% 90% 95% 99%
m = 1

T = 50
0.15 17.49 20.18 26.82 18.72 21.25 26.65 18.12 20.62 26.60
0.25 16.89 19.41 25.74 18.56 20.86 26.52 17.98 20.43 26.32
0.50 16.56 19.03 24.57 18.51 20.94 26.52 17.88 20.34 26.00

T = 100
0.15 17.95 21.03 28.71 18.16 20.77 26.43 18.04 21.17 28.37
0.25 15.56 18.26 24.05 17.03 19.32 24.00 16.55 18.97 24.92
0.50 14.58 16.86 21.30 16.47 18.92 23.86 15.92 18.28 23.42

T = 250
0.15 19.21 23.19 32.09 18.82 21.85 28.79 19.45 23.15 31.94
0.25 15.08 17.60 24.11 16.11 18.20 23.65 16.13 18.65 25.27
0.50 12.85 14.72 18.87 14.75 16.50 20.70 14.33 16.21 20.98

T = 500
0.15 20.83 24.76 35.04 20.90 24.37 32.96 21.56 25.51 35.91
0.25 15.35 17.67 24.79 16.60 18.98 24.46 16.55 18.95 25.93
0.50 12.49 14.04 17.37 14.34 15.89 19.51 13.96 15.66 19.37

T =∞
0.15 21.59 25.94 36.86 21.52 25.25 34.64 22.52 26.71 37.94
0.25 15.30 17.48 25.12 16.37 18.67 24.70 16.56 19.01 26.38
0.50 11.81 13.13 16.39 13.65 14.82 18.08 13.35 14.79 18.27

m = 2
T = 50

0.15 18.18 20.74 26.68 19.72 22.13 28.33 20.23 22.86 29.18
0.25 17.95 20.36 26.17 19.64 21.99 27.80 20.37 23.05 29.61
0.50 17.77 20.24 26.40 19.91 22.40 28.33 20.44 23.38 29.22

T = 100
0.15 18.74 21.57 27.97 19.57 22.19 28.05 20.01 22.43 28.48
0.25 17.21 19.08 25.53 18.84 21.23 26.08 19.62 21.93 27.02
0.50 16.84 19.15 24.07 18.84 21.09 25.82 19.62 21.13 27.15

T = 250
0.15 19.85 23.35 32.90 19.81 22.51 28.71 20.89 23.90 31.19
0.25 16.43 18.77 24.80 17.53 19.73 24.53 18.64 21.00 26.47
0.50 14.70 16.64 20.91 16.48 18.35 22.44 17.46 19.56 24.40

T = 500
0.15 21.24 25.01 35.89 21.49 24.69 31.92 22.52 26.01 35.26
0.25 16.54 18.96 26.23 17.70 19.77 24.76 18.62 21.19 27.14
0.50 14.26 15.90 19.66 15.86 17.51 21.06 16.97 18.75 23.10

T =∞
0.15 21.88 26.00 38.63 21.79 25.05 32.61 23.17 27.05 37.19
0.25 16.23 18.99 26.06 17.12 19.07 24.19 18.20 20.87 27.27
0.50 13.20 14.64 18.18 14.69 16.14 19.47 15.88 17.47 21.79

Note: C, C/T and C/S denote the structural break models in (3). m refers to the number of columns
of the regressor matrix xt. The lag truncation parameter is determined using the BIC and maximum
lag length Kmax = 8. Critical values for different order selection rules are not reported but can be
obtained from the author upon request. Critical values for u = {0.75, 0.85} are not reported to conserve
space. Since the distribution is symmetric in u, the values can easily be inferred from the table.

31



Table 3: Approximate critical values of F ∗MTAR, continued

C C/T C/S

u 90% 95% 99% 90% 95% 99% 90% 95% 99%
m = 3

T = 50
0.15 19.72 22.32 27.81 21.40 24.06 30.13 23.59 26.77 33.19
0.25 19.73 22.47 27.92 21.55 24.10 29.93 23.72 26.87 33.77
0.50 19.86 22.37 28.41 21.60 24.49 30.78 24.13 27.36 34.55

T = 100
0.15 19.74 22.37 28.26 21.05 23.53 28.71 22.89 25.54 30.77
0.25 18.90 21.17 26.30 20.50 22.95 27.94 22.77 25.36 30.68
0.50 18.66 21.03 25.79 20.51 22.89 28.32 22.90 25.71 31.06

T = 250
0.15 20.12 23.50 31.76 20.66 23.36 28.98 22.49 25.25 31.63
0.25 17.66 20.05 26.40 18.94 21.00 25.55 21.07 23.50 29.01
0.50 16.52 18.40 22.78 18.17 20.05 24.18 20.52 22.73 27.76

T = 500
0.15 21.79 25.58 34.78 22.22 25.74 33.58 23.45 26.54 34.99
0.25 17.92 20.37 26.21 19.01 21.17 27.07 20.88 23.27 28.54
0.50 15.94 17.76 21.83 17.45 19.21 23.49 19.77 21.75 26.03

T =∞
0.15 22.14 26.37 36.87 22.20 25.94 34.35 23.42 26.67 36.10
0.25 17.39 19.98 26.48 18.33 20.30 26.20 20.08 22.46 28.03
0.50 14.91 16.48 20.49 16.28 17.83 21.55 18.60 20.29 24.59

m = 4
T = 50

0.15 21.12 23.88 29.68 22.90 25.88 31.96 26.96 30.13 36.84
0.25 21.08 23.84 29.93 23.04 25.89 31.99 27.21 30.20 37.04
0.50 21.33 24.07 30.30 23.29 26.13 32.80 27.65 30.68 37.73

T = 100
0.15 21.05 23.51 29.54 22.43 24.71 30.01 25.57 28.29 33.88
0.25 20.52 22.93 27.47 22.31 24.65 29.63 25.77 28.31 34.02
0.50 20.49 22.93 27.85 22.43 24.91 30.01 26.15 28.71 34.65

T = 250
0.15 21.03 23.88 31.30 21.75 24.39 29.32 24.56 27.12 32.56
0.25 19.15 21.26 26.57 20.50 22.62 27.36 23.84 26.21 31.76
0.50 18.24 20.24 24.79 19.83 21.87 26.58 23.61 26.01 31.68

T = 500
0.15 22.38 25.85 35.15 22.59 25.57 33.44 25.12 28.03 35.57
0.25 18.89 21.28 27.64 19.98 22.11 27.03 23.28 25.52 30.62
0.50 17.43 19.27 23.32 18.82 20.71 24.71 22.37 24.53 29.27

T =∞
0.15 22.50 26.28 36.47 22.37 25.67 33.72 24.82 27.74 35.55
0.25 18.21 20.51 27.60 19.06 21.15 26.11 22.39 24.59 29.73
0.50 16.26 17.90 21.89 17.45 19.14 23.09 21.10 23.22 27.89

32



Table 4: Size-adjusted power of the supF test under structural change and symmetric adjustment

µ1 = 1, µ2 = 4, α1 = 2, α2 = 2 µ1 = 1, µ2 = 1, α1 = 2, α2 = 4
T = 50 T = 100 T = 50 T = 100

τ 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75
SETAR
C 0.372 0.377 0.380 0.970 0.970 0.972 0.211 0.217 0.421 0.686 0.627 0.880
C/T 0.224 0.234 0.223 0.875 0.878 0.874 0.107 0.113 0.157 0.485 0.529 0.744
C/S 0.278 0.277 0.290 0.922 0.921 0.934 0.343 0.293 0.334 0.980 0.972 0.966
MTAR
C 0.297 0.299 0.319 0.893 0.879 0.892 0.167 0.178 0.355 0.516 0.447 0.759
C/T 0.231 0.221 0.218 0.790 0.800 0.797 0.122 0.127 0.172 0.398 0.443 0.653
C/S 0.247 0.238 0.259 0.851 0.819 0.842 0.279 0.265 0.281 0.911 0.892 0.879
EG (c) 0.139 0.096 0.096 0.391 0.274 0.277 0.089 0.060 0.086 0.126 0.100 0.145
EG (c + t) 0.124 0.125 0.116 0.397 0.481 0.434 0.076 0.058 0.096 0.109 0.122 0.187
GH (C) 0.364 0.369 0.374 0.970 0.970 0.973 0.176 0.170 0.375 0.606 0.545 0.870
GH (C/T ) 0.240 0.248 0.239 0.879 0.879 0.878 0.101 0.108 0.150 0.411 0.470 0.709
GH (C/S) 0.271 0.271 0.283 0.922 0.921 0.934 0.296 0.257 0.293 0.968 0.963 0.962
ΦSETAR 0.216 0.184 0.186 0.738 0.600 0.727 0.111 0.095 0.148 0.196 0.189 0.303
ΦMTAR 0.194 0.193 0.183 0.699 0.565 0.619 0.092 0.082 0.132 0.182 0.169 0.245

Note: C, C/T and C/S denote the structural break models in (3). EG (c) and EG (c + t) refer to the Engle-Granger test with intercept and intercept plus trend,
respectively. GH denotes the Gregory-Hansen test. ΦSETAR and ΦMTAR denote the Enders-Siklos cointegration test with SETAR and MTAR adjustment, respectively.
The table is based on 2,500 replications of the DGP described in (13). The autoregressive coefficients are ρ1 = ρ2 = −0.5, i.e. the adjustment is constant and symmetric.
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Table 5: Estimates of the breakpoint under symmetric adjustment

SETAR
µ1 = 1, µ2 = 4, α1 = 2, α2 = 2 µ1 = 1, µ2 = 1, α1 = 2, α2 = 4
T = 50 T = 100 T = 50 T = 100

τ 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75
C 0.32(0.15) 0.53(0.11) 0.70(0.15) 0.28(0.10) 0.51(0.08) 0.74(0.11) 0.34(0.18) 0.55(0.13) 0.72(0.13) 0.28(0.12) 0.54(0.11) 0.75(0.10)

0.28(0.04) 0.52(0.04) 0.74(0.04) 0.26(0.02) 0.51(0.02) 0.76(0.02) 0.28(0.05) 0.54(0.04) 0.76(0.04) 0.26(0.02) 0.52(0.02) 0.77(0.02)
C/T 0.38(0.19) 0.50(0.16) 0.66(0.22) 0.33(0.16) 0.51(0.11) 0.69(0.16) 0.39(0.19) 0.53(0.15) 0.65(0.20) 0.31(0.15) 0.53(0.11) 0.73(0.13)

0.28(0.26) 0.50(0.08) 0.74(0.34) 0.27(0.03) 0.51(0.02) 0.75(0.03) 0.28(0.26) 0.52(0.10) 0.74(0.22) 0.27(0.02) 0.52(0.02) 0.75(0.02)
C/S 0.35(0.16) 0.53(0.12) 0.68(0.16) 0.30(0.11) 0.51(0.07) 0.72(0.12) 0.33(0.14) 0.54(0.09) 0.71(0.13) 0.27(0.07) 0.51(0.05) 0.75(0.07)

0.28(0.18) 0.54(0.04) 0.76(0.12) 0.25(0.02) 0.51(0.02) 0.76(0.03) 0.26(0.14) 0.54(0.04) 0.78(0.08) 0.25(0.02) 0.51(0.02) 0.77(0.01)
MTAR

µ1 = 1, µ2 = 4, α1 = 2, α2 = 2 µ1 = 1, µ2 = 1, α1 = 2, α2 = 4
T = 50 T = 100 T = 50 T = 100

τ 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75
C 0.35(0.18) 0.52(0.14) 0.68(0.18) 0.29(0.11) 0.51(0.08) 0.74(0.10) 0.38(0.22) 0.55(0.21) 0.67(0.21) 0.30(0.17) 0.54(0.17) 0.72(0.17)

0.28(0.14) 0.52(0.04) 0.74(0.10) 0.26(0.02) 0.51(0.02) 0.75(0.02) 0.28(0.30) 0.54(0.20) 0.74(0.04) 0.27(0.02) 0.52(0.09) 0.77(0.02)
C/T 0.40(0.20) 0.50(0.16) 0.60(0.22) 0.34(0.17) 0.51(0.12) 0.68(0.17) 0.42(0.21) 0.53(0.18) 0.64(0.21) 0.35(0.18) 0.54(0.15) 0.72(0.15)

0.28(0.34) 0.50(0.08) 0.72(0.38) 0.27(0.04) 0.51(0.02) 0.75(0.05) 0.32(0.32) 0.54(0.14) 0.74(0.26) 0.27(0.13) 0.52(0.07) 0.76(0.02)
C/S 0.38(0.18) 0.53(0.14) 0.67(0.17) 0.31(0.12) 0.51(0.08) 0.72(0.11) 0.36(0.17) 0.52(0.16) 0.66(0.22) 0.27(0.09) 0.50(0.10) 0.72(0.16)

0.30(0.26) 0.52(0.06) 0.74(0.18) 0.26(0.04) 0.52(0.02) 0.76(0.03) 0.30(0.22) 0.54(0.06) 0.76(0.16) 0.25(0.02) 0.52(0.02) 0.77(0.02)

Note: C, C/T and C/S denote the structural break models in (3). The left panel and right panel report the estimates of the break fraction following a shift in the
intercept and a shift in the slope, respectively. Upper rows contain the mean breakpoint estimate and the empirical standard deviation. Lower row contain the median
breakpoint and the interquartile range. The autoregressive coefficients are ρ1 = ρ2 = −0.5, i.e. the adjustment is constant and symmetric.
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Table 6: Size-adjusted power of the supF test (SETAR) under structural change and
asymmetric adjustment

µ1 = 1, µ2 = 1, α1 = 2, α2 = 2
C C/T C/S ΦSETAR

ρ1 ρ2 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
−0.025 −0.05 0.109 0.060 0.015 0.098 0.052 0.010 0.112 0.055 0.010 0.123 0.070 0.019

−0.15 0.130 0.072 0.022 0.121 0.065 0.012 0.125 0.066 0.014 0.160 0.086 0.023
−0.25 0.149 0.084 0.025 0.129 0.069 0.014 0.137 0.075 0.019 0.185 0.113 0.031

−0.05 −0.10 0.133 0.076 0.021 0.128 0.068 0.012 0.127 0.067 0.014 0.174 0.093 0.024
−0.25 0.178 0.104 0.034 0.163 0.089 0.019 0.168 0.093 0.024 0.276 0.170 0.052

−0.10 −0.15 0.195 0.114 0.035 0.176 0.103 0.022 0.176 0.103 0.025 0.338 0.205 0.060
−0.25 0.258 0.156 0.051 0.228 0.131 0.029 0.236 0.142 0.036 0.477 0.313 0.114

Size: 0.135 0.073 0.023 0.143 0.085 0.022 0.126 0.080 0.021 0.120 0.060 0.012
µ1 = 1, µ2 = 4, α1 = 2, α2 = 2

C C/T C/S ΦSETAR

ρ1 ρ2 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
−0.025 −0.05 0.104 0.052 0.013 0.108 0.051 0.009 0.106 0.054 0.013 0.119 0.062 0.014

−0.15 0.125 0.062 0.014 0.120 0.061 0.012 0.117 0.061 0.014 0.143 0.067 0.018
−0.25 0.140 0.072 0.016 0.132 0.068 0.017 0.128 0.068 0.016 0.153 0.084 0.022

−0.05 −0.10 0.129 0.062 0.013 0.122 0.065 0.012 0.118 0.063 0.014 0.147 0.080 0.019
−0.25 0.174 0.094 0.023 0.159 0.086 0.022 0.155 0.082 0.020 0.182 0.108 0.032

−0.10 −0.15 0.187 0.109 0.023 0.166 0.090 0.018 0.166 0.084 0.023 0.210 0.118 0.037
−0.25 0.244 0.145 0.041 0.211 0.120 0.029 0.209 0.113 0.032 0.258 0.158 0.053

µ1 = 1, µ2 = 1, α1 = 2, α2 = 4, δ = 1
C C/T C/S ΦSETAR

ρ1 ρ2 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
−0.025 −0.05 0.118 0.061 0.012 0.121 0.056 0.010 0.135 0.068 0.013 0.122 0.064 0.012

−0.15 0.120 0.061 0.011 0.122 0.065 0.012 0.136 0.069 0.013 0.124 0.064 0.012
−0.25 0.119 0.061 0.012 0.136 0.071 0.015 0.135 0.068 0.012 0.124 0.064 0.013

−0.05 −0.10 0.122 0.061 0.012 0.131 0.066 0.013 0.135 0.068 0.014 0.125 0.064 0.012
−0.25 0.123 0.061 0.011 0.167 0.090 0.018 0.134 0.070 0.012 0.125 0.066 0.014

−0.10 −0.15 0.123 0.063 0.012 0.179 0.102 0.022 0.137 0.069 0.012 0.126 0.067 0.014
−0.25 0.123 0.063 0.012 0.217 0.132 0.031 0.137 0.070 0.012 0.126 0.067 0.014

µ1 = 1, µ2 = 4, α1 = 2, α2 = 4
C C/T C/S ΦSETAR

ρ1 ρ2 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
−0.025 −0.05 0.247 0.176 0.096 0.206 0.141 0.061 0.339 0.262 0.148 0.111 0.057 0.011

−0.15 0.275 0.192 0.108 0.225 0.160 0.069 0.383 0.297 0.169 0.112 0.058 0.013
−0.25 0.283 0.200 0.110 0.235 0.165 0.076 0.408 0.313 0.186 0.118 0.062 0.015

−0.05 −0.10 0.280 0.203 0.117 0.232 0.162 0.072 0.398 0.307 0.176 0.116 0.058 0.011
−0.25 0.316 0.231 0.131 0.261 0.180 0.082 0.465 0.362 0.220 0.130 0.068 0.017

−0.10 −0.15 0.335 0.249 0.138 0.261 0.189 0.091 0.505 0.398 0.240 0.134 0.069 0.017
−0.25 0.365 0.282 0.162 0.295 0.208 0.107 0.565 0.450 0.282 0.143 0.081 0.022

Note: C, C/T and C/S denote the structural break models in (3). ΦSETAR denotes the Enders-Siklos cointegration
test with SETAR adjustment. The table is based on 2,500 replications of the DGP described in (13) with sample size
T = 100. The breakpoint occurs mid-sample, i.e. τ = 0.5. The test with the highest rejection rates is highlighted in
boldface.
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Table 7: Size-adjusted power of the supF test (MTAR) under structural change and
asymmetric adjustment

µ1 = 1, µ2 = 1, α1 = 2, α2 = 2
C C/T C/S ΦMTAR

ρ1 ρ2 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
−0.025 −0.05 0.090 0.043 0.007 0.096 0.045 0.008 0.094 0.050 0.008 0.112 0.054 0.013

−0.15 0.098 0.050 0.008 0.117 0.064 0.014 0.107 0.054 0.009 0.206 0.109 0.030
−0.25 0.135 0.073 0.014 0.152 0.082 0.016 0.142 0.072 0.013 0.378 0.224 0.066

−0.05 −0.10 0.090 0.048 0.009 0.115 0.059 0.014 0.099 0.056 0.012 0.168 0.091 0.024
−0.25 0.152 0.077 0.015 0.161 0.089 0.017 0.153 0.081 0.015 0.430 0.269 0.083

−0.10 −0.15 0.115 0.064 0.012 0.139 0.074 0.017 0.129 0.067 0.013 0.323 0.192 0.055
−0.25 0.189 0.100 0.019 0.198 0.106 0.020 0.192 0.110 0.016 0.557 0.365 0.119

Size: 0.085 0.042 0.007 0.074 0.039 0.006 0.093 0.041 0.009 0.109 0.060 0.014
µ1 = 1, µ2 = 4, α1 = 2, α2 = 2

C C/T C/S ΦMTAR

ρ1 ρ2 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
−0.025 −0.05 0.090 0.044 0.009 0.110 0.057 0.010 0.099 0.051 0.012 0.108 0.051 0.013

−0.15 0.104 0.053 0.013 0.117 0.064 0.010 0.106 0.050 0.012 0.155 0.083 0.014
−0.25 0.151 0.070 0.018 0.151 0.086 0.014 0.146 0.074 0.014 0.233 0.128 0.033

−0.05 −0.10 0.151 0.070 0.018 0.151 0.086 0.014 0.146 0.074 0.014 0.233 0.128 0.033
−0.25 0.166 0.078 0.017 0.159 0.091 0.016 0.160 0.078 0.017 0.255 0.142 0.039

−0.10 −0.15 0.134 0.067 0.015 0.136 0.073 0.015 0.143 0.066 0.013 0.212 0.115 0.026
−0.25 0.205 0.105 0.023 0.196 0.103 0.025 0.194 0.104 0.021 0.305 0.178 0.047

µ1 = 1, µ2 = 1, α1 = 2, α2 = 4, δ = 1
C C/T C/S ΦMTAR

ρ1 ρ2 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
−0.025 −0.05 0.099 0.050 0.006 0.103 0.049 0.010 0.114 0.053 0.006 0.120 0.062 0.013

−0.15 0.102 0.049 0.006 0.129 0.063 0.015 0.114 0.053 0.006 0.120 0.065 0.014
−0.25 0.102 0.047 0.006 0.162 0.088 0.019 0.110 0.055 0.006 0.123 0.063 0.014

−0.05 −0.10 0.101 0.047 0.006 0.119 0.064 0.015 0.113 0.053 0.007 0.114 0.057 0.013
−0.25 0.101 0.048 0.007 0.175 0.096 0.022 0.112 0.054 0.006 0.123 0.064 0.015

−0.10 −0.15 0.102 0.047 0.007 0.146 0.078 0.016 0.112 0.054 0.007 0.122 0.064 0.015
−0.25 0.103 0.048 0.007 0.197 0.113 0.028 0.112 0.057 0.006 0.123 0.065 0.014

µ1 = 1, µ2 = 4, α1 = 2, α2 = 4
C C/T C/S ΦMTAR

ρ1 ρ2 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
−0.025 −0.05 0.196 0.132 0.073 0.192 0.135 0.060 0.303 0.232 0.113 0.085 0.040 0.009

−0.15 0.219 0.156 0.082 0.223 0.154 0.071 0.367 0.281 0.140 0.096 0.050 0.009
−0.25 0.256 0.193 0.107 0.250 0.173 0.084 0.435 0.330 0.181 0.122 0.063 0.013

−0.05 −0.10 0.213 0.156 0.082 0.219 0.145 0.070 0.348 0.262 0.136 0.093 0.046 0.010
−0.25 0.273 0.204 0.115 0.257 0.182 0.090 0.458 0.350 0.200 0.126 0.069 0.016

−0.10 −0.15 0.265 0.191 0.106 0.240 0.175 0.084 0.422 0.326 0.180 0.115 0.062 0.012
−0.25 0.301 0.220 0.132 0.282 0.202 0.100 0.503 0.397 0.228 0.134 0.079 0.018

Note: C, C/T and C/S denote the structural break models in (3). ΦMTAR denotes the threshold cointegration test
with MTAR adjustment. The table is based on 2,500 replications of the DGP described in (13) with sample size T = 100.
The breakpoint occurs mid-sample, i.e. τ = 0.5. The test with the highest rejection rates is highlighted in boldface.
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Table 8: Size-adjusted power of the GH test under structural change and SETAR
adjustment

µ1 = 1, µ2 = 4, α1 = 2, α2 = 2
C C/T C/S

ρ1 ρ2 10% 5% 1% 10% 5% 1% 10% 5% 1%
−0.025 −0.05 0.114 0.062 0.011 0.110 0.052 0.010 0.117 0.058 0.014

−0.15 0.129 0.069 0.015 0.116 0.060 0.012 0.135 0.061 0.016
−0.25 0.139 0.083 0.018 0.128 0.068 0.014 0.153 0.069 0.018

−0.05 −0.10 0.136 0.071 0.018 0.124 0.066 0.012 0.135 0.066 0.016
−0.25 0.174 0.101 0.023 0.159 0.086 0.019 0.175 0.087 0.019

−0.10 −0.15 0.192 0.108 0.030 0.177 0.097 0.022 0.184 0.093 0.021
−0.25 0.247 0.150 0.037 0.208 0.125 0.032 0.239 0.128 0.029

µ1 = 1, µ2 = 1, α1 = 2, α2 = 4, δ = 1
C C/T C/S

ρ1 ρ2 10% 5% 1% 10% 5% 1% 10% 5% 1%
−0.025 −0.05 0.114 0.056 0.008 0.110 0.052 0.010 0.131 0.059 0.009

−0.15 0.113 0.055 0.008 0.116 0.060 0.012 0.130 0.058 0.010
−0.25 0.114 0.055 0.008 0.128 0.068 0.014 0.130 0.058 0.010

−0.05 −0.10 0.114 0.058 0.009 0.124 0.066 0.012 0.129 0.058 0.009
−0.25 0.114 0.058 0.009 0.159 0.086 0.019 0.131 0.061 0.008

−0.10 −0.15 0.114 0.059 0.009 0.177 0.097 0.022 0.133 0.058 0.009
−0.25 0.114 0.059 0.009 0.208 0.125 0.032 0.134 0.060 0.009

µ1 = 1, µ2 = 4, α1 = 2, α2 = 4
C C/T C/S

ρ1 ρ2 10% 5% 1% 10% 5% 1% 10% 5% 1%
−0.025 −0.05 0.202 0.134 0.060 0.182 0.104 0.039 0.293 0.197 0.088

−0.15 0.221 0.154 0.064 0.192 0.113 0.042 0.330 0.222 0.100
−0.25 0.236 0.165 0.069 0.204 0.126 0.047 0.348 0.242 0.108

−0.05 −0.10 0.230 0.152 0.072 0.199 0.119 0.047 0.346 0.237 0.112
−0.25 0.263 0.186 0.087 0.229 0.140 0.056 0.402 0.292 0.137

−0.10 −0.15 0.279 0.198 0.096 0.238 0.147 0.060 0.445 0.315 0.161
−0.25 0.307 0.226 0.109 0.262 0.171 0.072 0.510 0.379 0.193

Note: C, C/T and C/S denote the structural break models in (3). The table is based on 2,500 replications of the DGP
described in (13) with sample size T = 100. The breakpoint occurs mid-sample, i.e. τ = 0.5.
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Table 9: Size-adjusted power of the GH test under structural change and MTAR ad-
justment

µ1 = 1, µ2 = 4, α1 = 2, α2 = 2
C C/T C/S

ρ1 ρ2 10% 5% 1% 10% 5% 1% 10% 5% 1%
−0.025 −0.05 0.110 0.055 0.011 0.106 0.051 0.010 0.110 0.048 0.013

−0.15 0.140 0.074 0.017 0.133 0.068 0.015 0.139 0.067 0.016
−0.25 0.198 0.116 0.026 0.177 0.103 0.025 0.195 0.096 0.022

−0.05 −0.10 0.134 0.069 0.014 0.124 0.062 0.012 0.125 0.062 0.015
−0.25 0.223 0.132 0.032 0.191 0.112 0.029 0.214 0.109 0.023

−0.10 −0.15 0.184 0.105 0.024 0.165 0.090 0.022 0.177 0.086 0.020
−0.25 0.281 0.164 0.049 0.229 0.134 0.038 0.248 0.136 0.031

µ1 = 1, µ2 = 1, α1 = 2, α2 = 4, δ = 1
C C/T C/S

ρ1 ρ2 10% 5% 1% 10% 5% 1% 10% 5% 1%
−0.025 −0.05 0.115 0.055 0.008 0.106 0.051 0.010 0.129 0.057 0.010

−0.15 0.117 0.058 0.008 0.133 0.068 0.015 0.132 0.057 0.009
−0.25 0.120 0.058 0.008 0.177 0.103 0.025 0.132 0.058 0.008

−0.05 −0.10 0.116 0.057 0.009 0.124 0.062 0.012 0.131 0.057 0.009
−0.25 0.118 0.059 0.008 0.191 0.112 0.029 0.134 0.056 0.008

−0.10 −0.15 0.117 0.058 0.009 0.165 0.090 0.022 0.132 0.056 0.009
−0.25 0.116 0.058 0.008 0.229 0.134 0.038 0.137 0.057 0.010

µ1 = 1, µ2 = 4, α1 = 2, α2 = 4
C C/T C/S

ρ1 ρ2 10% 5% 1% 10% 5% 1% 10% 5% 1%
−0.025 −0.05 0.195 0.130 0.062 0.176 0.104 0.040 0.297 0.201 0.088

−0.15 0.225 0.155 0.075 0.201 0.120 0.050 0.359 0.245 0.116
−0.25 0.279 0.192 0.094 0.236 0.149 0.061 0.450 0.329 0.157

−0.05 −0.10 0.219 0.153 0.074 0.198 0.113 0.049 0.343 0.236 0.111
−0.25 0.293 0.205 0.100 0.247 0.159 0.063 0.481 0.360 0.175

−0.10 −0.15 0.269 0.190 0.096 0.233 0.144 0.059 0.435 0.312 0.156
−0.25 0.322 0.231 0.115 0.270 0.175 0.072 0.549 0.400 0.211

Note: C, C/T and C/S denote the structural break models in (3). The table is based on 2,500 replications of the DGP
described in (13) with sample size T = 100. The breakpoint occurs mid-sample, i.e. τ = 0.5.
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Table 10: Long-run adjustment along the gasoline value-chain

SETAR
Panel (a): No structural break

µ α ρ+ ρ− ΦSETAR ρ+ = ρ−

(I) 5.49 1.145 −0.225 −0.153 3.97 -
(II) 79.50 0.960 −0.567 −0.887 21.28∗∗∗ 2.029∗∗∗
(S) 76.38 1.141 −0.251 −0.326 7.20∗∗ 0.245

Panel (b): Structural break model C/S

µ1 µ2 α1 α2 ρ+ ρ− F ∗SETAR ρ+ = ρ− break
(I) 32.54 90.52 0.932 −0.216 −0.578 −0.551 14.79∗∗ 0.017 01/11
(II) 60.49 22.38 1.062 −0.123 −0.630 −1.018 25.93∗∗∗ 2.817∗∗ 10/08
(S) 93.80 195.44 0.989 −0.698 −0.453 −0.588 16.66∗∗∗ 0.549 02/11

MTAR
Panel (c): No structural break

µ α ρ+ ρ− ΦMTAR ρ+ = ρ−

(I) 5.49 1.140 −0.162 −0.243 3.95 -
(II) 79.50 0.960 −0.437 −0.871 21.51∗∗∗ 3.647∗∗
(S) 76.38 1.140 −0.226 −0.333 7.21∗∗ 0.510

Panel (d): Structural break model C/S

µ1 µ2 α1 α2 ρ+ ρ− F ∗MTAR ρ+ = ρ− break
(I) 32.86 81.55 0.930 −0.179 −0.634 −0.406 16.97∗∗ 1.474 12/10
(II) 62.92 20.31 1.046 −0.106 −0.453 −0.993 26.04∗∗∗ 5.544∗∗∗ 09/08
(S) 93.80 195.44 0.989 −0.698 −0.448 −0.556 16.14∗∗ 0.367 02/11

Note: µ (α) denotes the intercept (slope coefficient) of the long-run equilibrium equation without
structural break. µ1 (α1) and µ2 (α2) denote the intercept (slope coefficient) of the long-run equilibrium
equation before the break and after the break, respectively. δ is the linear trend coefficient. ΦSET AR

and ΦMT AR denote the F -statistic based on the null hypothesis H0 : ρ+ = ρ− = 0, respectively. We
conduct bootstrap F -tests with 600 replications to test the null hypothesis ρ+ = ρ−.
∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1
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